Cargando…
Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm
In this study we developed a deep learning (DL) algorithm that detects errors in retinal never fibre layer (RNFL) segmentation on spectral-domain optical coherence tomography (SDOCT) B-scans using human grades as the reference standard. A dataset of 25,250 SDOCT B-scans reviewed for segmentation err...
Autores principales: | Jammal, Alessandro A., Thompson, Atalie C., Ogata, Nara G., Mariottoni, Eduardo B., Urata, Carla N., Costa, Vital P., Medeiros, Felipe A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614403/ https://www.ncbi.nlm.nih.gov/pubmed/31285505 http://dx.doi.org/10.1038/s41598-019-46294-6 |
Ejemplares similares
-
Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach
por: Mariottoni, Eduardo B., et al.
Publicado: (2020) -
The Effect of Age on Increasing Susceptibility to Retinal Nerve Fiber Layer Loss in Glaucoma
por: Jammal, Alessandro A., et al.
Publicado: (2020) -
Predicting Age From Optical Coherence Tomography Scans With Deep Learning
por: Shigueoka, Leonardo S., et al.
Publicado: (2021) -
Segmentation error in spectral domain optical coherence tomography measures of the retinal nerve fibre layer thickness in idiopathic intracranial hypertension
por: Aojula, Anuriti, et al.
Publicado: (2018) -
Agreement Between Trend-Based and Qualitative Analysis of the Retinal Nerve Fiber Layer Thickness for Glaucoma Progression on Spectral-Domain Optical Coherence Tomography
por: Thompson, Atalie C., et al.
Publicado: (2021)