Cargando…

Phylogenetic and crystallographic analysis of Nostoc phycocyanin having blue-shifted spectral properties

The distinct sequence feature and spectral blue-shift (~10 nm) of phycocyanin, isolated from Nostoc sp. R76DM (N-PC), were investigated by phylogenetic and crystallographic analyses. Twelve conserved substitutions in N-PC sequence were found distributed unequally among α- and β-subunit (3 in α- and...

Descripción completa

Detalles Bibliográficos
Autores principales: Sonani, Ravi R., Rastogi, Rajesh Prasad, Patel, Stuti Nareshkumar, Chaubey, Mukesh Ghanshyam, Singh, Niraj Kumar, Gupta, Gagan D., Kumar, Vinay, Madamwar, Datta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614406/
https://www.ncbi.nlm.nih.gov/pubmed/31285455
http://dx.doi.org/10.1038/s41598-019-46288-4
Descripción
Sumario:The distinct sequence feature and spectral blue-shift (~10 nm) of phycocyanin, isolated from Nostoc sp. R76DM (N-PC), were investigated by phylogenetic and crystallographic analyses. Twelve conserved substitutions in N-PC sequence were found distributed unequally among α- and β-subunit (3 in α- and 9 in β-subunit). The phylogenetic analysis suggested that molecular evolution of α- and β-subunit of Nostoc-phycocyanin is faster than evolution of Nostoc-species. The divergence events seem to have occurred more frequently in β-subunit, compared to α-subunit (relative divergence, 7.38 for α-subunit and 9.66 for β-subunit). Crystal structure of N-PC was solved at 2.35 Å resolution to reasonable R-factors (R(work)/R(Free) = 0.199/0.248). Substitutions congregate near interface of two αβ-monomer in N-PC trimer and are of compensatory nature. Six of the substitutions in β-subunit may be involved in maintaining topology of β-subunit, one in inter-monomer interaction and one in interaction with linker-protein. The β153Cys-attached chromophore adopts high-energy conformational state resulting due to reduced coplanarity of B- and C-pyrrole rings. Distortion in chromophore conformation can result in blue-shift in N-PC spectral properties. N-PC showed significant in-vitro and in-vivo antioxidant activity comparable with other phycocyanin. Since Nostoc-species constitute a distinct phylogenetic clade, the present structure would provide a better template to build a model for phycocyanins of these species.