Cargando…
A Plant-Produced in vivo deglycosylated full-length Pfs48/45 as a Transmission-Blocking Vaccine Candidate against malaria
Pfs48/45 is a leading antigen candidate for a transmission blocking (TB) vaccine. However, efforts to produce affordable, safe and correctly folded full-length Pfs48/45 using different protein expression systems have not produced an antigen with satisfactory TB activity. Pfs48/45 has 16 cysteines in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614448/ https://www.ncbi.nlm.nih.gov/pubmed/31285498 http://dx.doi.org/10.1038/s41598-019-46375-6 |
Sumario: | Pfs48/45 is a leading antigen candidate for a transmission blocking (TB) vaccine. However, efforts to produce affordable, safe and correctly folded full-length Pfs48/45 using different protein expression systems have not produced an antigen with satisfactory TB activity. Pfs48/45 has 16 cysteines involved in disulfide bond formation, and the correct formation is critical for proper folding and induction of TB antibodies. Moreover, Pfs48⁄45 is not a glycoprotein in the native hosts, but contains potential glycosylation sites, which are aberrantly glycosylated during expression in eukaryotic systems. Here, we demonstrate for the first time that full length, Endo H in vivo enzymatic deglycosylated Pfs48/45 antigen is produced at a high level in plants and is structurally stable at elevated temperatures. Sera from mice immunized with this antigen showed strong inhibition in SMFA. Thus, Endo H in vivo enzymatic deglycosylated Pfs48/45 is a promising candidate for the development of an affordable TB vaccine, which may have the potential to save millions. |
---|