Cargando…

Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit

Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots. They constitute a promising approach to quantum information processing, complementary to superconducting qubits. Here, we demonstrate coherent coupling between a superconduc...

Descripción completa

Detalles Bibliográficos
Autores principales: Scarlino, P., van Woerkom, D. J., Mendes, U. C., Koski, J. V., Landig, A. J., Andersen, C. K., Gasparinetti, S., Reichl, C., Wegscheider, W., Ensslin, K., Ihn, T., Blais, A., Wallraff, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614454/
https://www.ncbi.nlm.nih.gov/pubmed/31285437
http://dx.doi.org/10.1038/s41467-019-10798-6
Descripción
Sumario:Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons or holes confined in quantum dots. They constitute a promising approach to quantum information processing, complementary to superconducting qubits. Here, we demonstrate coherent coupling between a superconducting transmon qubit and a semiconductor double quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a tunable high-impedance SQUID array resonator acting as a quantum bus. The transmon-charge qubit coherent coupling rate (~21 MHz) exceeds the linewidth of both the transmon (~0.8 MHz) and the DQD charge qubit (~2.7 MHz). By tuning the qubits into resonance for a controlled amount of time, we observe coherent oscillations between the constituents of this hybrid quantum system. These results enable a new class of experiments exploring the use of two-qubit interactions mediated by microwave photons to create entangled states between semiconductor and superconducting qubits.