Cargando…

mEAK-7 Forms an Alternative mTOR Complex with DNA-PKcs in Human Cancer

MTOR associated protein, eak-7 homolog (mEAK-7), activates mechanistic target of rapamycin (mTOR) signaling in human cells through an alternative mTOR complex to regulate S6K2 and 4E-BP1. However, the role of mEAK-7 in human cancer has not yet been identified. We demonstrate that mEAK-7 and mTOR sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Nguyen, Joe Truong, Haidar, Fatima Sarah, Fox, Alexandra Lucienne, Ray, Connor, Mendonça, Daniela Baccelli, Kim, Jin Koo, Krebsbach, Paul H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614755/
https://www.ncbi.nlm.nih.gov/pubmed/31288154
http://dx.doi.org/10.1016/j.isci.2019.06.029
Descripción
Sumario:MTOR associated protein, eak-7 homolog (mEAK-7), activates mechanistic target of rapamycin (mTOR) signaling in human cells through an alternative mTOR complex to regulate S6K2 and 4E-BP1. However, the role of mEAK-7 in human cancer has not yet been identified. We demonstrate that mEAK-7 and mTOR signaling are strongly elevated in tumor and metastatic lymph nodes of patients with non-small-cell lung carcinoma compared with those of patients with normal lung or lymph tissue. Cancer stem cells, CD44+/CD90+ cells, yield elevated mEAK-7 and activated mTOR signaling. mEAK-7 is required for clonogenic potential and spheroid formation. mEAK-7 associates with DNA-dependent protein kinase catalytic subunit isoform 1 (DNA-PKcs), and this interaction is increased in response to X-ray irradiation to regulate S6K2 signaling. DNA-PKcs pharmacologic inhibition or genetic knockout reduced S6K2, mEAK-7, and mTOR binding with DNA-PKcs, resulting in loss of S6K2 activity and mTOR signaling. Therefore, mEAK-7 forms an alternative mTOR complex with DNA-PKcs to regulate S6K2 in human cancer cells.