Cargando…

Peyssonnosides A–B, Unusual Diterpene Glycosides with a Sterically Encumbered Cyclopropane Motif: Structure Elucidation Using an Integrated Spectroscopic and Computational Workflow

[Image: see text] Two sulfated diterpene glycosides featuring a highly substituted and sterically encumbered cyclopropane ring have been isolated from the marine red alga Peyssonnelia sp. Combination of a wide array of 2D NMR spectroscopic experiments, in a systematic structure elucidation workflow,...

Descripción completa

Detalles Bibliográficos
Autores principales: Khatri Chhetri, Bhuwan, Lavoie, Serge, Sweeney-Jones, Anne Marie, Mojib, Nazia, Raghavan, Vijay, Gagaring, Kerstin, Dale, Brandon, McNamara, Case W., Soapi, Katy, Quave, Cassandra L., Polavarapu, Prasad L., Kubanek, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614789/
https://www.ncbi.nlm.nih.gov/pubmed/31244158
http://dx.doi.org/10.1021/acs.joc.9b00884
Descripción
Sumario:[Image: see text] Two sulfated diterpene glycosides featuring a highly substituted and sterically encumbered cyclopropane ring have been isolated from the marine red alga Peyssonnelia sp. Combination of a wide array of 2D NMR spectroscopic experiments, in a systematic structure elucidation workflow, revealed that peyssonnosides A–B (1–2) represent a new class of diterpene glycosides with a tetracyclo [7.5.0.0(1,10).0(5,9)] tetradecane architecture. A salient feature of this workflow is the unique application of quantitative interproton distances obtained from the rotating frame Overhauser effect spectroscopy (ROESY) NMR experiment, wherein the β-d-glucose moiety of 1 was used as an internal probe to unequivocally determine the absolute configuration, which was also supported by optical rotatory dispersion (ORD). Peyssonnoside A (1) exhibited promising activity against liver stage Plasmodium berghei and moderate antimethicillin-resistant Staphylococcus aureus (MRSA) activity, with no cytotoxicity against human keratinocytes. Additionally, 1 showed strong growth inhibition of the marine fungus Dendryphiella salina indicating an antifungal ecological role in its natural environment. The high natural abundance and novel carbon skeleton of 1 suggests a rare terpene cyclase machinery, exemplifying the chemical diversity in this phylogenetically distinct marine red alga.