Cargando…
A long noncoding RNA cluster-based genomic locus maintains proper development and visual function
Long noncoding RNAs (lncRNAs) represent a group of regulatory RNAs that play critical roles in numerous cellular events, but their functional importance in development remains largely unexplored. Here, we discovered a series of previously unidentified gene clusters harboring conserved lncRNAs at the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614851/ https://www.ncbi.nlm.nih.gov/pubmed/31127312 http://dx.doi.org/10.1093/nar/gkz444 |
Sumario: | Long noncoding RNAs (lncRNAs) represent a group of regulatory RNAs that play critical roles in numerous cellular events, but their functional importance in development remains largely unexplored. Here, we discovered a series of previously unidentified gene clusters harboring conserved lncRNAs at the nonimprinting regions in brain (CNIBs). Among the seven identified CNIBs, human CNIB1 locus is located at Chr 9q33.3 and conserved from Danio rerio to Homo sapiens. Chr 9q33.3-9q34.11 microdeletion has previously been linked to human nail-patella syndrome (NPS) which is frequently accompanied by developmental and visual deficiencies. By generating CNIB1 deletion alleles in zebrafish, we demonstrated the requirement of CNIB1 for proper growth and development, and visual activities. Furthermore, we found that the role of CNIB1 on visual activity is mediated through a regulator of ocular development-lmx1bb. Collectively, our study shows that CNIB1 lncRNAs are important for zebrafish development and provides an lncRNA cluster-mediated pathophysiological mechanism for human Chr 9q33.3-9q34.11 microdeletion syndrome. |
---|