Cargando…

Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures

We report a method to control the composition and microstructure of CdSe(1–x)S(x) nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hamachi, Leslie S., Yang, Haoran, Jen-La Plante, Ilan, Saenz, Natalie, Qian, Kevin, Campos, Michael P., Cleveland, Gregory T., Rreza, Iva, Oza, Aisha, Walravens, Willem, Chan, Emory M., Hens, Zeger, Crowther, Andrew C., Owen, Jonathan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615248/
https://www.ncbi.nlm.nih.gov/pubmed/31367306
http://dx.doi.org/10.1039/c9sc00989b
_version_ 1783433331331825664
author Hamachi, Leslie S.
Yang, Haoran
Jen-La Plante, Ilan
Saenz, Natalie
Qian, Kevin
Campos, Michael P.
Cleveland, Gregory T.
Rreza, Iva
Oza, Aisha
Walravens, Willem
Chan, Emory M.
Hens, Zeger
Crowther, Andrew C.
Owen, Jonathan S.
author_facet Hamachi, Leslie S.
Yang, Haoran
Jen-La Plante, Ilan
Saenz, Natalie
Qian, Kevin
Campos, Michael P.
Cleveland, Gregory T.
Rreza, Iva
Oza, Aisha
Walravens, Willem
Chan, Emory M.
Hens, Zeger
Crowther, Andrew C.
Owen, Jonathan S.
author_sort Hamachi, Leslie S.
collection PubMed
description We report a method to control the composition and microstructure of CdSe(1–x)S(x) nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compounds with conversion reaction reactivity exponents (k(E)) spanning 1.3 × 10(–5) s(–1) to 2.0 × 10(–1) s(–1). Depending on the relative reactivity (k(Se)/k(S)), core/shell and alloyed architectures were obtained. Growth of a thick outer CdS shell using a syringe pump method provides gram quantities of brightly photoluminescent quantum dots (PLQY = 67 to 90%) in a single reaction vessel. Kinetics simulations predict that relative precursor reactivity ratios of less than 10 result in alloyed compositions, while larger reactivity differences lead to abrupt interfaces. CdSe(1–x)S(x) alloys (k(Se)/k(S) = 2.4) display two longitudinal optical phonon modes with composition dependent frequencies characteristic of the alloy microstructure. When one precursor is more reactive than the other, its conversion reactivity and mole fraction control the number of nuclei, the final nanocrystal size at full conversion, and the elemental composition. The utility of controlled reactivity for adjusting alloy microstructure is discussed.
format Online
Article
Text
id pubmed-6615248
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-66152482019-07-31 Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures Hamachi, Leslie S. Yang, Haoran Jen-La Plante, Ilan Saenz, Natalie Qian, Kevin Campos, Michael P. Cleveland, Gregory T. Rreza, Iva Oza, Aisha Walravens, Willem Chan, Emory M. Hens, Zeger Crowther, Andrew C. Owen, Jonathan S. Chem Sci Chemistry We report a method to control the composition and microstructure of CdSe(1–x)S(x) nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compounds with conversion reaction reactivity exponents (k(E)) spanning 1.3 × 10(–5) s(–1) to 2.0 × 10(–1) s(–1). Depending on the relative reactivity (k(Se)/k(S)), core/shell and alloyed architectures were obtained. Growth of a thick outer CdS shell using a syringe pump method provides gram quantities of brightly photoluminescent quantum dots (PLQY = 67 to 90%) in a single reaction vessel. Kinetics simulations predict that relative precursor reactivity ratios of less than 10 result in alloyed compositions, while larger reactivity differences lead to abrupt interfaces. CdSe(1–x)S(x) alloys (k(Se)/k(S) = 2.4) display two longitudinal optical phonon modes with composition dependent frequencies characteristic of the alloy microstructure. When one precursor is more reactive than the other, its conversion reactivity and mole fraction control the number of nuclei, the final nanocrystal size at full conversion, and the elemental composition. The utility of controlled reactivity for adjusting alloy microstructure is discussed. Royal Society of Chemistry 2019-06-05 /pmc/articles/PMC6615248/ /pubmed/31367306 http://dx.doi.org/10.1039/c9sc00989b Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Hamachi, Leslie S.
Yang, Haoran
Jen-La Plante, Ilan
Saenz, Natalie
Qian, Kevin
Campos, Michael P.
Cleveland, Gregory T.
Rreza, Iva
Oza, Aisha
Walravens, Willem
Chan, Emory M.
Hens, Zeger
Crowther, Andrew C.
Owen, Jonathan S.
Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
title Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
title_full Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
title_fullStr Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
title_full_unstemmed Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
title_short Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
title_sort precursor reaction kinetics control compositional grading and size of cdse(1–x)s(x) nanocrystal heterostructures
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615248/
https://www.ncbi.nlm.nih.gov/pubmed/31367306
http://dx.doi.org/10.1039/c9sc00989b
work_keys_str_mv AT hamachileslies precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT yanghaoran precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT jenlaplanteilan precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT saenznatalie precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT qiankevin precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT camposmichaelp precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT clevelandgregoryt precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT rrezaiva precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT ozaaisha precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT walravenswillem precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT chanemorym precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT henszeger precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT crowtherandrewc precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures
AT owenjonathans precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures