Cargando…
Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
We report a method to control the composition and microstructure of CdSe(1–x)S(x) nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compo...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615248/ https://www.ncbi.nlm.nih.gov/pubmed/31367306 http://dx.doi.org/10.1039/c9sc00989b |
_version_ | 1783433331331825664 |
---|---|
author | Hamachi, Leslie S. Yang, Haoran Jen-La Plante, Ilan Saenz, Natalie Qian, Kevin Campos, Michael P. Cleveland, Gregory T. Rreza, Iva Oza, Aisha Walravens, Willem Chan, Emory M. Hens, Zeger Crowther, Andrew C. Owen, Jonathan S. |
author_facet | Hamachi, Leslie S. Yang, Haoran Jen-La Plante, Ilan Saenz, Natalie Qian, Kevin Campos, Michael P. Cleveland, Gregory T. Rreza, Iva Oza, Aisha Walravens, Willem Chan, Emory M. Hens, Zeger Crowther, Andrew C. Owen, Jonathan S. |
author_sort | Hamachi, Leslie S. |
collection | PubMed |
description | We report a method to control the composition and microstructure of CdSe(1–x)S(x) nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compounds with conversion reaction reactivity exponents (k(E)) spanning 1.3 × 10(–5) s(–1) to 2.0 × 10(–1) s(–1). Depending on the relative reactivity (k(Se)/k(S)), core/shell and alloyed architectures were obtained. Growth of a thick outer CdS shell using a syringe pump method provides gram quantities of brightly photoluminescent quantum dots (PLQY = 67 to 90%) in a single reaction vessel. Kinetics simulations predict that relative precursor reactivity ratios of less than 10 result in alloyed compositions, while larger reactivity differences lead to abrupt interfaces. CdSe(1–x)S(x) alloys (k(Se)/k(S) = 2.4) display two longitudinal optical phonon modes with composition dependent frequencies characteristic of the alloy microstructure. When one precursor is more reactive than the other, its conversion reactivity and mole fraction control the number of nuclei, the final nanocrystal size at full conversion, and the elemental composition. The utility of controlled reactivity for adjusting alloy microstructure is discussed. |
format | Online Article Text |
id | pubmed-6615248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-66152482019-07-31 Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures Hamachi, Leslie S. Yang, Haoran Jen-La Plante, Ilan Saenz, Natalie Qian, Kevin Campos, Michael P. Cleveland, Gregory T. Rreza, Iva Oza, Aisha Walravens, Willem Chan, Emory M. Hens, Zeger Crowther, Andrew C. Owen, Jonathan S. Chem Sci Chemistry We report a method to control the composition and microstructure of CdSe(1–x)S(x) nanocrystals by the simultaneous injection of sulfide and selenide precursors into a solution of cadmium oleate and oleic acid at 240 °C. Pairs of substituted thio- and selenoureas were selected from a library of compounds with conversion reaction reactivity exponents (k(E)) spanning 1.3 × 10(–5) s(–1) to 2.0 × 10(–1) s(–1). Depending on the relative reactivity (k(Se)/k(S)), core/shell and alloyed architectures were obtained. Growth of a thick outer CdS shell using a syringe pump method provides gram quantities of brightly photoluminescent quantum dots (PLQY = 67 to 90%) in a single reaction vessel. Kinetics simulations predict that relative precursor reactivity ratios of less than 10 result in alloyed compositions, while larger reactivity differences lead to abrupt interfaces. CdSe(1–x)S(x) alloys (k(Se)/k(S) = 2.4) display two longitudinal optical phonon modes with composition dependent frequencies characteristic of the alloy microstructure. When one precursor is more reactive than the other, its conversion reactivity and mole fraction control the number of nuclei, the final nanocrystal size at full conversion, and the elemental composition. The utility of controlled reactivity for adjusting alloy microstructure is discussed. Royal Society of Chemistry 2019-06-05 /pmc/articles/PMC6615248/ /pubmed/31367306 http://dx.doi.org/10.1039/c9sc00989b Text en This journal is © The Royal Society of Chemistry 2019 https://creativecommons.org/licenses/by/3.0/This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Hamachi, Leslie S. Yang, Haoran Jen-La Plante, Ilan Saenz, Natalie Qian, Kevin Campos, Michael P. Cleveland, Gregory T. Rreza, Iva Oza, Aisha Walravens, Willem Chan, Emory M. Hens, Zeger Crowther, Andrew C. Owen, Jonathan S. Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures |
title | Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
|
title_full | Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
|
title_fullStr | Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
|
title_full_unstemmed | Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
|
title_short | Precursor reaction kinetics control compositional grading and size of CdSe(1–x)S(x) nanocrystal heterostructures
|
title_sort | precursor reaction kinetics control compositional grading and size of cdse(1–x)s(x) nanocrystal heterostructures |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615248/ https://www.ncbi.nlm.nih.gov/pubmed/31367306 http://dx.doi.org/10.1039/c9sc00989b |
work_keys_str_mv | AT hamachileslies precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT yanghaoran precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT jenlaplanteilan precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT saenznatalie precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT qiankevin precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT camposmichaelp precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT clevelandgregoryt precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT rrezaiva precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT ozaaisha precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT walravenswillem precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT chanemorym precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT henszeger precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT crowtherandrewc precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures AT owenjonathans precursorreactionkineticscontrolcompositionalgradingandsizeofcdse1xsxnanocrystalheterostructures |