Cargando…
Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data
BACKGROUND: Unsupervised machine learning methods (deep learning) have shown their usefulness with noisy single cell mRNA-sequencing data (scRNA-seq), where the models generalize well, despite the zero-inflation of the data. A class of neural networks, namely autoencoders, has been useful for denois...
Autores principales: | Kinalis, Savvas, Nielsen, Finn Cilius, Winther, Ole, Bagger, Frederik Otzen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615267/ https://www.ncbi.nlm.nih.gov/pubmed/31286861 http://dx.doi.org/10.1186/s12859-019-2952-9 |
Ejemplares similares
-
Interpretable Autoencoders Trained on Single Cell Sequencing Data Can Transfer Directly to Data from Unseen Tissues
por: Walbech, Julie Sparholt, et al.
Publicado: (2021) -
BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles
por: Bagger, Frederik Otzen, et al.
Publicado: (2019) -
Benchmarking full-length transcript single cell mRNA sequencing protocols
por: Probst, Victoria, et al.
Publicado: (2022) -
Unveiling mRNP composition by fluorescence correlation and cross-correlation spectroscopy using cell lysates
por: Mateu-Regué, Àngels, et al.
Publicado: (2021) -
HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis
por: Bagger, Frederik Otzen, et al.
Publicado: (2013)