Cargando…

Optimal Defense Theory 2.0: tissue-specific stress defense prioritization as an extra layer of complexity

In nature, plants need to be able to quickly adapt to changing environments during their lifetime in order to maintain fitness. Different defense responses are not only costly, but often also antagonistic to one another. Hence, when faced with multiple stresses simultaneously, plants likely have to...

Descripción completa

Detalles Bibliográficos
Autores principales: Wolinska, Katarzyna Wiktoria, Berens, Matthias Leonhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6615527/
https://www.ncbi.nlm.nih.gov/pubmed/31308873
http://dx.doi.org/10.1080/19420889.2019.1625661
Descripción
Sumario:In nature, plants need to be able to quickly adapt to changing environments during their lifetime in order to maintain fitness. Different defense responses are not only costly, but often also antagonistic to one another. Hence, when faced with multiple stresses simultaneously, plants likely have to prioritize their defense responses. This type of crosstalk between different stress response pathways is suggested to balance the high costs of triggering and maintaining stress responses with the limited amount of resources available to a plant. This assumption is in accordance with the optimal defense theory (ODT), which states that living organisms put more resources into protection of the most valuable tissues, but does not explain how plants survive combined stress conditions in nature. In this review, we describe recent evidence that expands on the framework of the ODT by suggesting that under combined stress plants spatially separate contrasting stress responses, rather than protecting the most valuable tissues to simultaneously protect themselves from contrasting stressors. We discuss the implications of these findings for understanding plant responses to combined stresses and suggest potentially fruitful avenues for further research.