Cargando…
Bio-enzymes for inhibition and elimination of Escherichia coli O157:H7 biofilm and their synergistic effect with sodium hypochlorite
Escherichia coli O157:H7 is one of the most important pathogens worldwide. In this study, three different kinds of enzymes, DNase I, proteinase K and cellulase were evaluated for inhibitory or degrading activity against E. coli O157:H7 biofilm by targeting extracellular DNA, proteins, and cellulose,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616338/ https://www.ncbi.nlm.nih.gov/pubmed/31289312 http://dx.doi.org/10.1038/s41598-019-46363-w |
Sumario: | Escherichia coli O157:H7 is one of the most important pathogens worldwide. In this study, three different kinds of enzymes, DNase I, proteinase K and cellulase were evaluated for inhibitory or degrading activity against E. coli O157:H7 biofilm by targeting extracellular DNA, proteins, and cellulose, respectively. The cell number of biofilms formed under proteinase K resulted in a 2.43 log CFU/cm(2) reduction with an additional synergistic 3.72 log CFU/cm(2) reduction after NaClO post-treatment, while no significant reduction occurred with NaClO treatment alone. It suggests that protein degradation could be a good way to control the biofilm effectively. In preformed biofilms, all enzymes showed a significant reduction of 16.4–36.7% in biofilm matrix in 10-fold diluted media (p < 0.05). The sequential treatment with proteinase K, cellulase, and NaClO showed a significantly higher synergistic inactivation of 2.83 log CFU/cm(2) compared to 1.58 log CFU/cm(2) in the sequence of cellulase, proteinase K, and NaClO (p < 0.05). It suggests that the sequence of multiple enzymes can make a significant difference in the susceptibility of biofilms to NaClO. This study indicates that the combination of extracellular polymeric substance-degrading enzymes with NaClO could be useful for the efficient control of E. coli O157:H7 biofilms. |
---|