Cargando…

Selective hippocampal subfield volume reductions in classic trigeminal neuralgia

Trigeminal Neuralgia (TN) is a chronic neuropathic pain syndrome characterized by paroxysmal unilateral shock-like pains in the trigeminal territory most frequently attributed to neurovascular compression of the trigeminal nerve at its root entry zone. Recent advances in the study of TN suggest a po...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaculik, Michael Frantisek, Noorani, Alborz, Hung, Peter Shih-Ping, Hodaie, Mojgan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616529/
https://www.ncbi.nlm.nih.gov/pubmed/31491821
http://dx.doi.org/10.1016/j.nicl.2019.101911
Descripción
Sumario:Trigeminal Neuralgia (TN) is a chronic neuropathic pain syndrome characterized by paroxysmal unilateral shock-like pains in the trigeminal territory most frequently attributed to neurovascular compression of the trigeminal nerve at its root entry zone. Recent advances in the study of TN suggest a possible central nervous system (CNS) role in modulation and maintenance of pain. TN and other chronic pain patients commonly experience alterations in cognition and affect, as well as abnormalities in CNS volume and microstructure in regions associated with pain perception, emotional modulation, and memory consolidation. However, the microstructural changes in the hippocampus, an important structure within the limbic system, have not been previously studied in TN patients. Here, we use grey matter analysis to assess whether TN pain is associated with altered hippocampal subfield volume in patients with classic TN. Anatomical magnetic resonance (MR) images of twenty-two right-sided TN patients and matched healthy controls underwent automated segmentation of hippocampal subfields using FreeSurfer v6.0. Right-sided TN patients had significant volumetric reductions in ipsilateral cornu ammois 1 (CA1), CA4, dentate gyrus, molecular layer, and hippocampus-amygdala transition area – resulting in decreased whole ipsilateral hippocampal volume, compared to healthy controls. Overall, we demonstrate selective hippocampal subfield volume reduction in patients with classic TN. These changes occur in subfields implicated as neural circuits for chronic pain processing. Selective subfield volume reduction suggests aberrant processes and circuitry reorganization, which may contribute to development and/or maintenance of TN symptoms.