Cargando…
3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery
Additive manufacturing has great potential for personalized medicine in osseous fixation surgery, including maxillofacial and orthopedic applications. The purpose of this study was to demonstrate 3D printing methods for the fabrication of patient-specific fixation implants that allow for localized d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616894/ https://www.ncbi.nlm.nih.gov/pubmed/30939719 http://dx.doi.org/10.3390/jfb10020017 |
_version_ | 1783433566559928320 |
---|---|
author | Tappa, Karthik Jammalamadaka, Udayabhanu Weisman, Jeffery A. Ballard, David H. Wolford, Dallas D. Pascual-Garrido, Cecilia Wolford, Larry M. Woodard, Pamela K. Mills, David K. |
author_facet | Tappa, Karthik Jammalamadaka, Udayabhanu Weisman, Jeffery A. Ballard, David H. Wolford, Dallas D. Pascual-Garrido, Cecilia Wolford, Larry M. Woodard, Pamela K. Mills, David K. |
author_sort | Tappa, Karthik |
collection | PubMed |
description | Additive manufacturing has great potential for personalized medicine in osseous fixation surgery, including maxillofacial and orthopedic applications. The purpose of this study was to demonstrate 3D printing methods for the fabrication of patient-specific fixation implants that allow for localized drug delivery. 3D printing was used to fabricate gentamicin (GS) and methotrexate (MTX)-loaded fixation devices, including screws, pins, and bone plates. Scaffolds with different infill ratios of polylactic acid (PLA), both without drugs and impregnated with GS and MTX, were printed into cylindrical and rectangular-shaped constructs for compressive and flexural strength mechanical testing, respectively. Bland PLA constructs showed significantly higher flexural strength when printed in a Y axis at 100% infill compared to other axes and infill ratios; however, there was no significant difference in flexural strength between other axes and infill ratios. GS and MTX-impregnated constructs had significantly lower flexural and compressive strength as compared to the bland PLA constructs. GS-impregnated implants demonstrated bacterial inhibition in plate cultures. Similarly, MTX-impregnated implants demonstrated a cytotoxic effect in osteosarcoma assays. This proof of concept work shows the potential of developing 3D printed screws and plating materials with the requisite mechanical properties and orientations. Drug-impregnated implants were technically successful and had an anti-bacterial and chemotherapeutic effect, but drug addition significantly decreased the flexural and compressive strengths of the custom implants. |
format | Online Article Text |
id | pubmed-6616894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66168942019-07-18 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery Tappa, Karthik Jammalamadaka, Udayabhanu Weisman, Jeffery A. Ballard, David H. Wolford, Dallas D. Pascual-Garrido, Cecilia Wolford, Larry M. Woodard, Pamela K. Mills, David K. J Funct Biomater Article Additive manufacturing has great potential for personalized medicine in osseous fixation surgery, including maxillofacial and orthopedic applications. The purpose of this study was to demonstrate 3D printing methods for the fabrication of patient-specific fixation implants that allow for localized drug delivery. 3D printing was used to fabricate gentamicin (GS) and methotrexate (MTX)-loaded fixation devices, including screws, pins, and bone plates. Scaffolds with different infill ratios of polylactic acid (PLA), both without drugs and impregnated with GS and MTX, were printed into cylindrical and rectangular-shaped constructs for compressive and flexural strength mechanical testing, respectively. Bland PLA constructs showed significantly higher flexural strength when printed in a Y axis at 100% infill compared to other axes and infill ratios; however, there was no significant difference in flexural strength between other axes and infill ratios. GS and MTX-impregnated constructs had significantly lower flexural and compressive strength as compared to the bland PLA constructs. GS-impregnated implants demonstrated bacterial inhibition in plate cultures. Similarly, MTX-impregnated implants demonstrated a cytotoxic effect in osteosarcoma assays. This proof of concept work shows the potential of developing 3D printed screws and plating materials with the requisite mechanical properties and orientations. Drug-impregnated implants were technically successful and had an anti-bacterial and chemotherapeutic effect, but drug addition significantly decreased the flexural and compressive strengths of the custom implants. MDPI 2019-04-01 /pmc/articles/PMC6616894/ /pubmed/30939719 http://dx.doi.org/10.3390/jfb10020017 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tappa, Karthik Jammalamadaka, Udayabhanu Weisman, Jeffery A. Ballard, David H. Wolford, Dallas D. Pascual-Garrido, Cecilia Wolford, Larry M. Woodard, Pamela K. Mills, David K. 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery |
title | 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery |
title_full | 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery |
title_fullStr | 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery |
title_full_unstemmed | 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery |
title_short | 3D Printing Custom Bioactive and Absorbable Surgical Screws, Pins, and Bone Plates for Localized Drug Delivery |
title_sort | 3d printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616894/ https://www.ncbi.nlm.nih.gov/pubmed/30939719 http://dx.doi.org/10.3390/jfb10020017 |
work_keys_str_mv | AT tappakarthik 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT jammalamadakaudayabhanu 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT weismanjefferya 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT ballarddavidh 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT wolforddallasd 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT pascualgarridocecilia 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT wolfordlarrym 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT woodardpamelak 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery AT millsdavidk 3dprintingcustombioactiveandabsorbablesurgicalscrewspinsandboneplatesforlocalizeddrugdelivery |