Cargando…
Deep Convolutional Neural Network-Based Positron Emission Tomography Analysis Predicts Esophageal Cancer Outcome
In esophageal cancer, few prediction tools can be confidently used in current clinical practice. We developed a deep convolutional neural network (CNN) with 798 positron emission tomography (PET) scans of esophageal squamous cell carcinoma and 309 PET scans of stage I lung cancer. In the first stage...
Autores principales: | Yang, Cheng-Kun, Yeh, Joe Chao-Yuan, Yu, Wei-Hsiang, Chien, Ling-I., Lin, Ko-Han, Huang, Wen-Sheng, Hsu, Po-Kuei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616908/ https://www.ncbi.nlm.nih.gov/pubmed/31200519 http://dx.doi.org/10.3390/jcm8060844 |
Ejemplares similares
-
Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network
por: Yeh, Joe Chao-Yuan, et al.
Publicado: (2021) -
Esophageal Papilloma Detected by Positron Emission Tomography
por: Iwamuro, Masaya, et al.
Publicado: (2019) -
Evaluation of an Automatic Classification Algorithm Using Convolutional Neural Networks in Oncological Positron Emission Tomography
por: Pinochet, Pierre, et al.
Publicado: (2021) -
DeepPVC: prediction of a partial volume-corrected map for brain positron emission tomography studies via a deep convolutional neural network
por: Matsubara, Keisuke, et al.
Publicado: (2022) -
Multi-slice representational learning of convolutional neural network for Alzheimer’s disease classification using positron emission tomography
por: Kim, Han Woong, et al.
Publicado: (2020)