Cargando…

Biomechanical Properties of the Cranial Dura Mater with Puncture Defects : An In Vitro Study

OBJECTIVE: The primary aim of this investigation was to explore the nature of dura mater biomechanics following the introduction of puncture defect(s). METHODS: Twenty-eight dura mater specimens were collected during autopsy from the department of forensic medicine of the authors' institution....

Descripción completa

Detalles Bibliográficos
Autores principales: Aydın, Hasan Emre, Kızmazoglu, Ceren, Kaya, Ismail, Husemoglu, Bugra, Sozer, Gulden, Havıtcıoglu, Hasan, Arslantas, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Neurosurgical Society 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616988/
https://www.ncbi.nlm.nih.gov/pubmed/31089067
http://dx.doi.org/10.3340/jkns.2018.0130
Descripción
Sumario:OBJECTIVE: The primary aim of this investigation was to explore the nature of dura mater biomechanics following the introduction of puncture defect(s). METHODS: Twenty-eight dura mater specimens were collected during autopsy from the department of forensic medicine of the authors' institution. Specimens were divided randomly into one of four groups : group I (cranial dura mater; n=7), group II (cranial dura mater with one puncture defect; n=7); group III (cranial dura mater with two puncture defects; n=7), and group IV (cranial dura mater with three puncture defects; n=7). RESULTS: The mean±standard deviation tensile strengths of the dura mater were 8.35±3.16, 8.22±3.32, 7.13±1.77, and 6.94±1.93 MPa for groups I, II, III, and IV, respectively. There was no statistical difference between all groups. A single, two or more punctures of the dura mater using a 20-gauge Quincke needle did not affect cranial dura tensile strength. CONCLUSION: This biomechanical study may contribute to the future development of artificial dura mater substitutes and medical needles that have a lower negative impact on the biomechanical properties of dura mater.