Cargando…
α-Rank: Multi-Agent Evaluation by Evolution
We introduce α-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking of agents in large-scale multi-agent interactions, grounded in a novel dynamical game-theoretic solution concept called Markov-Conley chains (MCCs). The approach leverages continuous-time and discrete...
Autores principales: | Omidshafiei, Shayegan, Papadimitriou, Christos, Piliouras, Georgios, Tuyls, Karl, Rowland, Mark, Lespiau, Jean-Baptiste, Czarnecki, Wojciech M., Lanctot, Marc, Perolat, Julien, Munos, Remi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617105/ https://www.ncbi.nlm.nih.gov/pubmed/31289288 http://dx.doi.org/10.1038/s41598-019-45619-9 |
Ejemplares similares
-
Navigating the landscape of multiplayer games
por: Omidshafiei, Shayegan, et al.
Publicado: (2020) -
Symmetric Decomposition of Asymmetric Games
por: Tuyls, Karl, et al.
Publicado: (2018) -
From Nash Equilibria to Chain Recurrent Sets: An Algorithmic Solution Concept for Game Theory
por: Papadimitriou, Christos, et al.
Publicado: (2018) -
An impossibility theorem in game dynamics
por: Milionis, Jason, et al.
Publicado: (2023) -
Learning agents in Black–Scholes financial markets
por: Vaidya, Tushar, et al.
Publicado: (2020)