Cargando…
Supervised Machine Learning Based Multi-Task Artificial Intelligence Classification of Retinopathies
Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative opt...
Autores principales: | Alam, Minhaj, Le, David, Lim, Jennifer I., Chan, Robison V.P., Yao, Xincheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617139/ https://www.ncbi.nlm.nih.gov/pubmed/31216768 http://dx.doi.org/10.3390/jcm8060872 |
Ejemplares similares
-
Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy
por: Le, David, et al.
Publicado: (2020) -
Differential Artery–Vein Analysis Improves the Performance of OCTA Staging of Sickle Cell Retinopathy
por: Alam, Minhaj, et al.
Publicado: (2019) -
Diabetic retinopathy classification for supervised machine learning algorithms
por: Nakayama, Luis Filipe, et al.
Publicado: (2022) -
Combining ODR and Blood Vessel Tracking for Artery–Vein Classification and Analysis in Color Fundus Images
por: Alam, Minhaj, et al.
Publicado: (2018) -
SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
por: Ullah, Zahid, et al.
Publicado: (2023)