Cargando…
Direct Prediction of the Toxic Gas Diffusion Rule in a Real Environment Based on LSTM
Predicting the diffusion rule of toxic gas plays a distinctly important role in emergency capability assessment and rescue work. Among diffusion prediction models, the traditional artificial neural network has exhibited excellent performance not only in prediction accuracy but also in calculation ti...
Autores principales: | Qian, Fei, Chen, Li, Li, Jun, Ding, Chao, Chen, Xianfu, Wang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617190/ https://www.ncbi.nlm.nih.gov/pubmed/31212880 http://dx.doi.org/10.3390/ijerph16122133 |
Ejemplares similares
-
CNN-Bi-LSTM: A Complex Environment-Oriented Cattle Behavior Classification Network Based on the Fusion of CNN and Bi-LSTM
por: Gao, Guohong, et al.
Publicado: (2023) -
CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany
por: Aksan, Fachrizal, et al.
Publicado: (2023) -
Gas Concentration Prediction Based on IWOA-LSTM-CEEMDAN Residual Correction Model
por: Xu, Ningke, et al.
Publicado: (2022) -
High Precision Dimensional Measurement with Convolutional Neural Network and Bi-Directional Long Short-Term Memory (LSTM)
por: Wang, Yuhao, et al.
Publicado: (2019) -
Entity relation extraction from electronic medical records based on improved annotation rules and BiLSTM-CRF
por: Chen, Tingyin, et al.
Publicado: (2021)