Cargando…
The Role of Genetic Factors in Characterizing Extra-Intestinal Manifestations in Crohn’s Disease Patients: Are Bayesian Machine Learning Methods Improving Outcome Predictions?
(1) Background: The high heterogeneity of inflammatory bowel disease (IBD) makes the study of this condition challenging. In subjects affected by Crohn’s disease (CD), extra-intestinal manifestations (EIMs) have a remarkable potential impact on health status. Increasing numbers of patient characteri...
Autores principales: | Bottigliengo, Daniele, Berchialla, Paola, Lanera, Corrado, Azzolina, Danila, Lorenzoni, Giulia, Martinato, Matteo, Giachino, Daniela, Baldi, Ileana, Gregori, Dario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617350/ https://www.ncbi.nlm.nih.gov/pubmed/31212952 http://dx.doi.org/10.3390/jcm8060865 |
Ejemplares similares
-
Adjustment for Baseline Covariates to Increase Efficiency in RCTs with Binary Endpoint: A Comparison of Bayesian and Frequentist Approaches
por: Berchialla, Paola, et al.
Publicado: (2021) -
Is a more aggressive COVID-19 case detection approach mitigating the burden on ICUs? Some reflections from Italy
por: Lorenzoni, Giulia, et al.
Publicado: (2020) -
A SuperLearner Approach to Predict Run-In Selection in Clinical Trials
por: Lanera, Corrado, et al.
Publicado: (2022) -
COVID-19 hospitalizations and patients' age at admission: The neglected importance of data variability for containment policies
por: Azzolina, Danila, et al.
Publicado: (2022) -
Propensity Score Analysis with Partially Observed Baseline Covariates: A Practical Comparison of Methods for Handling Missing Data
por: Bottigliengo, Daniele, et al.
Publicado: (2021)