Cargando…
How Dihalogens Catalyze Michael Addition Reactions
We have quantum chemically analyzed the catalytic effect of dihalogen molecules (X(2)=F(2), Cl(2), Br(2), and I(2)) on the aza‐Michael addition of pyrrolidine and methyl acrylate using relativistic density functional theory and coupled‐cluster theory. Our state‐of‐the‐art computations reveal that ac...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617756/ https://www.ncbi.nlm.nih.gov/pubmed/31033118 http://dx.doi.org/10.1002/anie.201903196 |
Sumario: | We have quantum chemically analyzed the catalytic effect of dihalogen molecules (X(2)=F(2), Cl(2), Br(2), and I(2)) on the aza‐Michael addition of pyrrolidine and methyl acrylate using relativistic density functional theory and coupled‐cluster theory. Our state‐of‐the‐art computations reveal that activation barriers systematically decrease as one goes to heavier dihalogens, from 9.4 kcal mol(−1) for F(2) to 5.7 kcal mol(−1) for I(2). Activation strain and bonding analyses identify an unexpected physical factor that controls the computed reactivity trends, namely, Pauli repulsion between the nucleophile and Michael acceptor. Thus, dihalogens do not accelerate Michael additions by the commonly accepted mechanism of an enhanced donor–acceptor [HOMO(nucleophile)–LUMO(Michael acceptor)] interaction, but instead through a diminished Pauli repulsion between the lone‐pair of the nucleophile and the Michael acceptor's π‐electron system. |
---|