Cargando…
Integration of probabilistic regulatory networks into constraint-based models of metabolism with applications to Alzheimer’s disease
BACKGROUND: Mathematical models of biological networks can provide important predictions and insights into complex disease. Constraint-based models of cellular metabolism and probabilistic models of gene regulatory networks are two distinct areas that have progressed rapidly in parallel over the pas...
Autores principales: | Yu, Han, Blair, Rachael Hageman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617954/ https://www.ncbi.nlm.nih.gov/pubmed/31291905 http://dx.doi.org/10.1186/s12859-019-2872-8 |
Ejemplares similares
-
Network constraints on learnability of probabilistic motor sequences
por: Kahn, Ari E., et al.
Publicado: (2018) -
Metabolic Constraint-Based Refinement of Transcriptional Regulatory Networks
por: Chandrasekaran, Sriram, et al.
Publicado: (2013) -
Constraint-based probabilistic learning of metabolic pathways from tomato volatiles
por: Gavai, Anand K., et al.
Publicado: (2009) -
What Can Causal Networks Tell Us about Metabolic Pathways?
por: Blair, Rachael Hageman, et al.
Publicado: (2012) -
Steady-State Analysis of Genetic Regulatory Networks Modelled by
Probabilistic Boolean Networks
por: Shmulevich, Ilya, et al.
Publicado: (2003)