Cargando…
Impact of sampling rate on statistical significance for single subject fMRI connectivity analysis
A typical time series in functional magnetic resonance imaging (fMRI) exhibits autocorrelation, that is, the samples of the time series are dependent. In addition, temporal filtering, one of the crucial steps in preprocessing of functional magnetic resonance images, induces its own autocorrelation....
Autores principales: | James, Oliver, Park, Hyunjin, Kim, Seong‐Gi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618018/ https://www.ncbi.nlm.nih.gov/pubmed/31004386 http://dx.doi.org/10.1002/hbm.24600 |
Ejemplares similares
-
Detecting functional connectivity change points for single-subject fMRI data
por: Cribben, Ivor, et al.
Publicado: (2013) -
Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T
por: Han, Paul Kyu, et al.
Publicado: (2015) -
An Updated Survey on Statistical Thresholding and Sample Size of fMRI Studies
por: Yeung, Andy W. K.
Publicado: (2018) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
Sampling Rate Effects on Resting State fMRI Metrics
por: Huotari, Niko, et al.
Publicado: (2019)