Cargando…

Cobalt‐Catalyzed Aqueous Dehydrogenation of Formic Acid

Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions....

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Wei, Wei, Zhihong, Spannenberg, Anke, Jiao, Haijun, Junge, Kathrin, Junge, Henrik, Beller, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618042/
https://www.ncbi.nlm.nih.gov/pubmed/30938464
http://dx.doi.org/10.1002/chem.201805612
Descripción
Sumario:Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions. Crucial for catalytic activity is the use of the specific complex 3. Compared to related ruthenium and manganese complexes 7 and 8, this optimal cobalt complex showed improved performance. DFT computations support an innocent non‐classical bifunctional outer‐sphere mechanism on the triplet state potential energy surface.