Cargando…

Cover's universal portfolio, stochastic portfolio theory, and the numéraire portfolio

Cover's celebrated theorem states that the long‐run yield of a properly chosen “universal” portfolio is almost as good as that of the best retrospectively chosen constant rebalanced portfolio. The “universality” refers to the fact that this result is model‐free, that is, not dependent on an und...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuchiero, Christa, Schachermayer, Walter, Wong, Ting‐Kam Leonard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618251/
https://www.ncbi.nlm.nih.gov/pubmed/31341352
http://dx.doi.org/10.1111/mafi.12201
Descripción
Sumario:Cover's celebrated theorem states that the long‐run yield of a properly chosen “universal” portfolio is almost as good as that of the best retrospectively chosen constant rebalanced portfolio. The “universality” refers to the fact that this result is model‐free, that is, not dependent on an underlying stochastic process. We extend Cover's theorem to the setting of stochastic portfolio theory: the market portfolio is taken as the numéraire, and the rebalancing rule need not be constant anymore but may depend on the current state of the stock market. By fixing a stochastic model of the stock market this model‐free result is complemented by a comparison with the numéraire portfolio. Roughly speaking, under appropriate assumptions the asymptotic growth rate coincides for the three approaches mentioned in the title of this paper. We present results in both discrete and continuous time.