Cargando…
GNrep mouse: A reporter mouse for front–rear cell polarity
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618267/ https://www.ncbi.nlm.nih.gov/pubmed/30990965 http://dx.doi.org/10.1002/dvg.23299 |
_version_ | 1783433881852051456 |
---|---|
author | Barbacena, Pedro Ouarné, Marie Haigh, Jody J. Vasconcelos, Francisca F. Pezzarossa, Anna Franco, Claudio A. |
author_facet | Barbacena, Pedro Ouarné, Marie Haigh, Jody J. Vasconcelos, Francisca F. Pezzarossa, Anna Franco, Claudio A. |
author_sort | Barbacena, Pedro |
collection | PubMed |
description | Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although front–rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live‐imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front–rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus‐to‐Golgi axis to each cell, which functions as a readout for cell front–rear polarity. As a proof‐of‐principle, we validated the efficiency of the GNrep line using an endothelial‐specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large‐scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front–rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease. |
format | Online Article Text |
id | pubmed-6618267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66182672019-07-22 GNrep mouse: A reporter mouse for front–rear cell polarity Barbacena, Pedro Ouarné, Marie Haigh, Jody J. Vasconcelos, Francisca F. Pezzarossa, Anna Franco, Claudio A. Genesis Technology Reports Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although front–rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live‐imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front–rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus‐to‐Golgi axis to each cell, which functions as a readout for cell front–rear polarity. As a proof‐of‐principle, we validated the efficiency of the GNrep line using an endothelial‐specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large‐scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front–rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease. John Wiley & Sons, Inc. 2019-04-16 2019-06 /pmc/articles/PMC6618267/ /pubmed/30990965 http://dx.doi.org/10.1002/dvg.23299 Text en © 2019 The Authors. Genesis published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Technology Reports Barbacena, Pedro Ouarné, Marie Haigh, Jody J. Vasconcelos, Francisca F. Pezzarossa, Anna Franco, Claudio A. GNrep mouse: A reporter mouse for front–rear cell polarity |
title | GNrep mouse: A reporter mouse for front–rear cell polarity |
title_full | GNrep mouse: A reporter mouse for front–rear cell polarity |
title_fullStr | GNrep mouse: A reporter mouse for front–rear cell polarity |
title_full_unstemmed | GNrep mouse: A reporter mouse for front–rear cell polarity |
title_short | GNrep mouse: A reporter mouse for front–rear cell polarity |
title_sort | gnrep mouse: a reporter mouse for front–rear cell polarity |
topic | Technology Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618267/ https://www.ncbi.nlm.nih.gov/pubmed/30990965 http://dx.doi.org/10.1002/dvg.23299 |
work_keys_str_mv | AT barbacenapedro gnrepmouseareportermouseforfrontrearcellpolarity AT ouarnemarie gnrepmouseareportermouseforfrontrearcellpolarity AT haighjodyj gnrepmouseareportermouseforfrontrearcellpolarity AT vasconcelosfranciscaf gnrepmouseareportermouseforfrontrearcellpolarity AT pezzarossaanna gnrepmouseareportermouseforfrontrearcellpolarity AT francoclaudioa gnrepmouseareportermouseforfrontrearcellpolarity |