Cargando…
Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations
Although the interplay between endogenous opioids and dopamine (DA) in the basal ganglia (BG) is known to underlie diverse motor functions, few studies exist on their role in modulating speech and vocalization. Vocal impairment is a common symptom of Parkinson’s disease (PD), wherein DA depletion af...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618663/ https://www.ncbi.nlm.nih.gov/pubmed/31333400 http://dx.doi.org/10.3389/fnins.2019.00671 |
_version_ | 1783433899084349440 |
---|---|
author | Kumar, Sandeep Mohapatra, Alok Nath Sharma, Hanuman Prasad Singh, Utkarsha A. Kambi, Niranjan Ashok Velpandian, Thirumurthy Rajan, Raghav Iyengar, Soumya |
author_facet | Kumar, Sandeep Mohapatra, Alok Nath Sharma, Hanuman Prasad Singh, Utkarsha A. Kambi, Niranjan Ashok Velpandian, Thirumurthy Rajan, Raghav Iyengar, Soumya |
author_sort | Kumar, Sandeep |
collection | PubMed |
description | Although the interplay between endogenous opioids and dopamine (DA) in the basal ganglia (BG) is known to underlie diverse motor functions, few studies exist on their role in modulating speech and vocalization. Vocal impairment is a common symptom of Parkinson’s disease (PD), wherein DA depletion affects striosomes rich in μ-opioid receptors (μ-ORs). Symptoms of opioid addiction also include deficiencies in verbal functions and speech. To understand the interplay between the opioid system and BG in vocalization, we used adult male songbirds wherein high levels of μ-ORs are expressed in Area X, a BG region which is part of a circuit similar to the mammalian thalamocortical-basal ganglia loop. Changes in DA, glutamate and GABA levels were analyzed during the infusion of different doses of the μ-OR antagonist naloxone (50 and 100 ng/ml) specifically in Area X. Blocking μ-ORs in Area X with 100 ng/ml naloxone led to increased levels of DA in this region without altering the number of songs directed toward females (FD). Interestingly, this manipulation also led to changes in the spectro-temporal properties of FD songs, suggesting that altered opioid modulation in the thalamocortical-basal ganglia circuit can affect vocalization. Our study suggests that songbirds are excellent model systems to explore how the interplay between μ-ORs and DA modulation in the BG affects speech/vocalization. |
format | Online Article Text |
id | pubmed-6618663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66186632019-07-22 Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations Kumar, Sandeep Mohapatra, Alok Nath Sharma, Hanuman Prasad Singh, Utkarsha A. Kambi, Niranjan Ashok Velpandian, Thirumurthy Rajan, Raghav Iyengar, Soumya Front Neurosci Neuroscience Although the interplay between endogenous opioids and dopamine (DA) in the basal ganglia (BG) is known to underlie diverse motor functions, few studies exist on their role in modulating speech and vocalization. Vocal impairment is a common symptom of Parkinson’s disease (PD), wherein DA depletion affects striosomes rich in μ-opioid receptors (μ-ORs). Symptoms of opioid addiction also include deficiencies in verbal functions and speech. To understand the interplay between the opioid system and BG in vocalization, we used adult male songbirds wherein high levels of μ-ORs are expressed in Area X, a BG region which is part of a circuit similar to the mammalian thalamocortical-basal ganglia loop. Changes in DA, glutamate and GABA levels were analyzed during the infusion of different doses of the μ-OR antagonist naloxone (50 and 100 ng/ml) specifically in Area X. Blocking μ-ORs in Area X with 100 ng/ml naloxone led to increased levels of DA in this region without altering the number of songs directed toward females (FD). Interestingly, this manipulation also led to changes in the spectro-temporal properties of FD songs, suggesting that altered opioid modulation in the thalamocortical-basal ganglia circuit can affect vocalization. Our study suggests that songbirds are excellent model systems to explore how the interplay between μ-ORs and DA modulation in the BG affects speech/vocalization. Frontiers Media S.A. 2019-07-03 /pmc/articles/PMC6618663/ /pubmed/31333400 http://dx.doi.org/10.3389/fnins.2019.00671 Text en Copyright © 2019 Kumar, Mohapatra, Sharma, Singh, Kambi, Velpandian, Rajan and Iyengar. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Kumar, Sandeep Mohapatra, Alok Nath Sharma, Hanuman Prasad Singh, Utkarsha A. Kambi, Niranjan Ashok Velpandian, Thirumurthy Rajan, Raghav Iyengar, Soumya Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations |
title | Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations |
title_full | Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations |
title_fullStr | Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations |
title_full_unstemmed | Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations |
title_short | Altering Opioid Neuromodulation in the Songbird Basal Ganglia Modulates Vocalizations |
title_sort | altering opioid neuromodulation in the songbird basal ganglia modulates vocalizations |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618663/ https://www.ncbi.nlm.nih.gov/pubmed/31333400 http://dx.doi.org/10.3389/fnins.2019.00671 |
work_keys_str_mv | AT kumarsandeep alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations AT mohapatraaloknath alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations AT sharmahanumanprasad alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations AT singhutkarshaa alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations AT kambiniranjanashok alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations AT velpandianthirumurthy alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations AT rajanraghav alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations AT iyengarsoumya alteringopioidneuromodulationinthesongbirdbasalgangliamodulatesvocalizations |