Cargando…
Nonproportional hazards and unobserved heterogeneity in clustered survival data: When can we tell the difference?
Multivariate survival data are frequently encountered in biomedical applications in the form of clustered failures (or recurrent events data). A popular way of analyzing such data is by using shared frailty models, which assume that the proportional hazards assumption holds conditional on an unobser...
Autores principales: | Balan, Theodor Adrian, Putter, Hein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619282/ https://www.ncbi.nlm.nih.gov/pubmed/31050028 http://dx.doi.org/10.1002/sim.8171 |
Ejemplares similares
-
The effect of treatment delay on time‐to‐recovery in the presence of unobserved heterogeneity
por: van Geloven, Nan, et al.
Publicado: (2020) -
PSHREG: A SAS macro for proportional and nonproportional subdistribution hazards regression
por: Kohl, Maria, et al.
Publicado: (2015) -
Dietary Patterns May Be Nonproportional Hazards for the Incidence of Type 2 Diabetes: Evidence from Korean Adult Females
por: Chung, Sangwon, et al.
Publicado: (2019) -
Survival Models on Unobserved Heterogeneity and their Applications in Analyzing Large-scale Survey Data
por: Liu, Xian
Publicado: (2014) -
Log-Rank Test vs MaxCombo and Difference in Restricted Mean Survival Time Tests for Comparing Survival Under Nonproportional Hazards in Immuno-oncology Trials: A Systematic Review and Meta-analysis
por: Mukhopadhyay, Pralay, et al.
Publicado: (2022)