Cargando…

Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach

BACKGROUND: CD4 cell counts is widely used as a biomarker for treatment progression when studying the efficacy of drugs to treat HIV-infected patients. In the past, it had been also used in determining eligibility to initiate antiretroviral therapy. The main aim of this was to model the evolution of...

Descripción completa

Detalles Bibliográficos
Autores principales: Awoke Ayele, Tadesse, Worku, Alemayehu, Kebede, Yigzaw, Zuma, Khangelani, Kasim, Adetayo, Shkedy, Ziv
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619674/
https://www.ncbi.nlm.nih.gov/pubmed/31291281
http://dx.doi.org/10.1371/journal.pone.0218514
_version_ 1783433949608935424
author Awoke Ayele, Tadesse
Worku, Alemayehu
Kebede, Yigzaw
Zuma, Khangelani
Kasim, Adetayo
Shkedy, Ziv
author_facet Awoke Ayele, Tadesse
Worku, Alemayehu
Kebede, Yigzaw
Zuma, Khangelani
Kasim, Adetayo
Shkedy, Ziv
author_sort Awoke Ayele, Tadesse
collection PubMed
description BACKGROUND: CD4 cell counts is widely used as a biomarker for treatment progression when studying the efficacy of drugs to treat HIV-infected patients. In the past, it had been also used in determining eligibility to initiate antiretroviral therapy. The main aim of this was to model the evolution of CD4 counts over time and use this model for an early prediction of subject-specific time to cross a pre-specified CD4 threshold. METHODS: Hospital based retrospective cohort study of HIV-infected patients was conducted from January 2009 to December 2014 at University of Gondar hospital, Northwest Ethiopia. Fractional polynomial random effect model is used to model the evolution of CD4 counts over time in response to treatment and to estimate the individual probability to be above a pre-selected CD4 threshold. Human subject research approval for this study was received from University of Gondar Research Ethics Committee and the medical director of the hospital. RESULTS: A total of 1347 patients were included in the analysis presented in this paper. The cohort contributed a total of 236.58 per 100 person-years of follow-up. Later the data were divided into two periods: the first is the estimation period in which the parameters of the model are estimated and the second is the prediction period. Based on the parameters from the estimation period, model based prediction for the time to cross a threshold was estimated. The correlations between observed and predicted values of CD4 levels in the estimation period were 0.977 and 0.982 for Neverapine and Efavirenz containing regimens, respectively; while the correlation between the observed and predicted CD4 counts in the prediction period are 0.742 and 0.805 for NVP and EFV, respectively. CONCLUSIONS: The model enables us to estimate a subject-specific expected time to cross a CD4 threshold and to estimate a subject-specific probability to have CD4 count above a pre-specified threshold at each time point. By predicting long-term outcomes of CD4 count of the patients one can advise patient about the potential ART benefits that accrue in the long-term.
format Online
Article
Text
id pubmed-6619674
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-66196742019-07-25 Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach Awoke Ayele, Tadesse Worku, Alemayehu Kebede, Yigzaw Zuma, Khangelani Kasim, Adetayo Shkedy, Ziv PLoS One Research Article BACKGROUND: CD4 cell counts is widely used as a biomarker for treatment progression when studying the efficacy of drugs to treat HIV-infected patients. In the past, it had been also used in determining eligibility to initiate antiretroviral therapy. The main aim of this was to model the evolution of CD4 counts over time and use this model for an early prediction of subject-specific time to cross a pre-specified CD4 threshold. METHODS: Hospital based retrospective cohort study of HIV-infected patients was conducted from January 2009 to December 2014 at University of Gondar hospital, Northwest Ethiopia. Fractional polynomial random effect model is used to model the evolution of CD4 counts over time in response to treatment and to estimate the individual probability to be above a pre-selected CD4 threshold. Human subject research approval for this study was received from University of Gondar Research Ethics Committee and the medical director of the hospital. RESULTS: A total of 1347 patients were included in the analysis presented in this paper. The cohort contributed a total of 236.58 per 100 person-years of follow-up. Later the data were divided into two periods: the first is the estimation period in which the parameters of the model are estimated and the second is the prediction period. Based on the parameters from the estimation period, model based prediction for the time to cross a threshold was estimated. The correlations between observed and predicted values of CD4 levels in the estimation period were 0.977 and 0.982 for Neverapine and Efavirenz containing regimens, respectively; while the correlation between the observed and predicted CD4 counts in the prediction period are 0.742 and 0.805 for NVP and EFV, respectively. CONCLUSIONS: The model enables us to estimate a subject-specific expected time to cross a CD4 threshold and to estimate a subject-specific probability to have CD4 count above a pre-specified threshold at each time point. By predicting long-term outcomes of CD4 count of the patients one can advise patient about the potential ART benefits that accrue in the long-term. Public Library of Science 2019-07-10 /pmc/articles/PMC6619674/ /pubmed/31291281 http://dx.doi.org/10.1371/journal.pone.0218514 Text en © 2019 Awoke Ayele et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Awoke Ayele, Tadesse
Worku, Alemayehu
Kebede, Yigzaw
Zuma, Khangelani
Kasim, Adetayo
Shkedy, Ziv
Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach
title Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach
title_full Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach
title_fullStr Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach
title_full_unstemmed Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach
title_short Model-based prediction of CD4 cells counts in HIV-infected adults on antiretroviral therapy in Northwest Ethiopia: A flexible mixed effects approach
title_sort model-based prediction of cd4 cells counts in hiv-infected adults on antiretroviral therapy in northwest ethiopia: a flexible mixed effects approach
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619674/
https://www.ncbi.nlm.nih.gov/pubmed/31291281
http://dx.doi.org/10.1371/journal.pone.0218514
work_keys_str_mv AT awokeayeletadesse modelbasedpredictionofcd4cellscountsinhivinfectedadultsonantiretroviraltherapyinnorthwestethiopiaaflexiblemixedeffectsapproach
AT workualemayehu modelbasedpredictionofcd4cellscountsinhivinfectedadultsonantiretroviraltherapyinnorthwestethiopiaaflexiblemixedeffectsapproach
AT kebedeyigzaw modelbasedpredictionofcd4cellscountsinhivinfectedadultsonantiretroviraltherapyinnorthwestethiopiaaflexiblemixedeffectsapproach
AT zumakhangelani modelbasedpredictionofcd4cellscountsinhivinfectedadultsonantiretroviraltherapyinnorthwestethiopiaaflexiblemixedeffectsapproach
AT kasimadetayo modelbasedpredictionofcd4cellscountsinhivinfectedadultsonantiretroviraltherapyinnorthwestethiopiaaflexiblemixedeffectsapproach
AT shkedyziv modelbasedpredictionofcd4cellscountsinhivinfectedadultsonantiretroviraltherapyinnorthwestethiopiaaflexiblemixedeffectsapproach