Cargando…
Enhancement of performance and stability of anaerobic co-digestion of waste activated sludge and kitchen waste by using bentonite
There are large amounts of waste activated sludge (WAS) and kitchen waste (KW) produced every year in China. It has been confirmed that anaerobic co-digestion is an effective method to solve this problem. The targets of the present study were optimizing the digestive performances and clearing of the...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619994/ https://www.ncbi.nlm.nih.gov/pubmed/31291286 http://dx.doi.org/10.1371/journal.pone.0218856 |
Sumario: | There are large amounts of waste activated sludge (WAS) and kitchen waste (KW) produced every year in China. It has been confirmed that anaerobic co-digestion is an effective method to solve this problem. The targets of the present study were optimizing the digestive performances and clearing of the mechanism of bentonite addition by adding bentonite into digestive system. Group M (WAS: KW = 1:2, based on VS) presented higher cumulative methane yield (CMY), where the CMY increased from 19.8 to 36.3 mL/g VS with the bentonite dosage from 0 to 2 g/g VS. After bentonite addition, the lag phase of every digester presented an obvious decrease from 15.1 to 1.4 d. Furthermore, and the moderating effects on microbial community by bentonite. The addition of bentonite improved methane production, and it can also reduce the lag phase of methane production in co-digestion. What's more, bentonite addition increased the speed of pH recovery from 4.2–4.8 to normal level (7.0–8.0) and thus enhanced the system stability. The conclusion of this study can be used to guide practical engineering. |
---|