Cargando…
Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes
Physiological responses to work in cold water have been well studied but little is known about the effects of exercise in warm water; an overlooked but critical issue for certain military, scientific, recreational, and professional diving operations. This investigation examined core temperature resp...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620004/ https://www.ncbi.nlm.nih.gov/pubmed/31312674 http://dx.doi.org/10.1080/23328940.2019.1599182 |
_version_ | 1783433975537074176 |
---|---|
author | Looney, David P. Long, Edwin T. Potter, Adam W. Xu, Xiaojiang Friedl, Karl E. Hoyt, Reed W. Chalmers, Christopher R. Buller, Mark J. Florian, John P. |
author_facet | Looney, David P. Long, Edwin T. Potter, Adam W. Xu, Xiaojiang Friedl, Karl E. Hoyt, Reed W. Chalmers, Christopher R. Buller, Mark J. Florian, John P. |
author_sort | Looney, David P. |
collection | PubMed |
description | Physiological responses to work in cold water have been well studied but little is known about the effects of exercise in warm water; an overlooked but critical issue for certain military, scientific, recreational, and professional diving operations. This investigation examined core temperature responses to fatiguing, fully-immersed exercise in extremely warm waters. Twenty-one male U.S. Navy divers (body mass, 87.3 ± 12.3 kg) were monitored during rest and fatiguing exercise while fully-immersed in four different water temperatures (Tw): 34.4, 35.8, 37.2, and 38.6°C (Tw(34.4), Tw(35.8), Tw(37.2), and Tw(38.6) respectively). Participants exercised on an underwater cycle ergometer until volitional fatigue or core temperature limits were reached. Core body temperature and heart rate were monitored continuously. Trial performance time decreased significantly as water temperature increased (Tw(34.4), 174 ± 12 min; Tw(35.8), 115 ± 13 min; Tw(37.2), 50 ± 13 min; Tw(38.6), 34 ± 14 min). Peak core body temperature during work was significantly lower in Tw(34.4) water (38.31 ± 0.49°C) than in warmer temperatures (Tw(35.8), 38.60 ± 0.55°C; Tw(37.2), 38.82 ± 0.76°C; Tw(38.6), 38.97 ± 0.65°C). Core body temperature rate of change increased significantly with warmer water temperature (Tw(34.4), 0.39 ± 0.28°C·h(−1); Tw(35.8), 0.80 ± 0.19°C·h(−1); Tw(37.2), 2.02 ± 0.31°C·h(−1); Tw(38.6), 3.54 ± 0.41°C·h(−1)). Physically active divers risk severe hyperthermia in warmer waters. Increases in water temperature drastically increase the rate of core body temperature rise during work in warm water. New predictive models for core temperature based on workload and duration of warm water exposure are needed to ensure warm water diving safety. |
format | Online Article Text |
id | pubmed-6620004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-66200042019-07-16 Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes Looney, David P. Long, Edwin T. Potter, Adam W. Xu, Xiaojiang Friedl, Karl E. Hoyt, Reed W. Chalmers, Christopher R. Buller, Mark J. Florian, John P. Temperature (Austin) Research Paper Physiological responses to work in cold water have been well studied but little is known about the effects of exercise in warm water; an overlooked but critical issue for certain military, scientific, recreational, and professional diving operations. This investigation examined core temperature responses to fatiguing, fully-immersed exercise in extremely warm waters. Twenty-one male U.S. Navy divers (body mass, 87.3 ± 12.3 kg) were monitored during rest and fatiguing exercise while fully-immersed in four different water temperatures (Tw): 34.4, 35.8, 37.2, and 38.6°C (Tw(34.4), Tw(35.8), Tw(37.2), and Tw(38.6) respectively). Participants exercised on an underwater cycle ergometer until volitional fatigue or core temperature limits were reached. Core body temperature and heart rate were monitored continuously. Trial performance time decreased significantly as water temperature increased (Tw(34.4), 174 ± 12 min; Tw(35.8), 115 ± 13 min; Tw(37.2), 50 ± 13 min; Tw(38.6), 34 ± 14 min). Peak core body temperature during work was significantly lower in Tw(34.4) water (38.31 ± 0.49°C) than in warmer temperatures (Tw(35.8), 38.60 ± 0.55°C; Tw(37.2), 38.82 ± 0.76°C; Tw(38.6), 38.97 ± 0.65°C). Core body temperature rate of change increased significantly with warmer water temperature (Tw(34.4), 0.39 ± 0.28°C·h(−1); Tw(35.8), 0.80 ± 0.19°C·h(−1); Tw(37.2), 2.02 ± 0.31°C·h(−1); Tw(38.6), 3.54 ± 0.41°C·h(−1)). Physically active divers risk severe hyperthermia in warmer waters. Increases in water temperature drastically increase the rate of core body temperature rise during work in warm water. New predictive models for core temperature based on workload and duration of warm water exposure are needed to ensure warm water diving safety. Taylor & Francis 2019-04-13 /pmc/articles/PMC6620004/ /pubmed/31312674 http://dx.doi.org/10.1080/23328940.2019.1599182 Text en This work was authored as part of the Contributor’s official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. https://creativecommons.org/publicdomain/mark/1.0/ This is an Open Access article that has been identified as being free of known restrictions under copyright law, including all related and neighboring rights ( https://creativecommons.org/publicdomain/mark/1.0/). You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. |
spellingShingle | Research Paper Looney, David P. Long, Edwin T. Potter, Adam W. Xu, Xiaojiang Friedl, Karl E. Hoyt, Reed W. Chalmers, Christopher R. Buller, Mark J. Florian, John P. Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes |
title | Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes |
title_full | Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes |
title_fullStr | Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes |
title_full_unstemmed | Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes |
title_short | Divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes |
title_sort | divers risk accelerated fatigue and core temperature rise during fully-immersed exercise in warmer water temperature extremes |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620004/ https://www.ncbi.nlm.nih.gov/pubmed/31312674 http://dx.doi.org/10.1080/23328940.2019.1599182 |
work_keys_str_mv | AT looneydavidp diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT longedwint diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT potteradamw diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT xuxiaojiang diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT friedlkarle diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT hoytreedw diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT chalmerschristopherr diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT bullermarkj diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes AT florianjohnp diversriskacceleratedfatigueandcoretemperatureriseduringfullyimmersedexerciseinwarmerwatertemperatureextremes |