Cargando…
Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure
Being able to assess the phenotypic effects of mutations is a much required capability in precision medicine. However, most of the currently available structure-based methods actually predict stability changes caused by mutations rather than their pathogenic potential. There are also no dedicated me...
Autores principales: | Popov, Petr, Bizin, Ilya, Gromiha, Michael, A, Kulandaisamy, Frishman, Dmitrij |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620012/ https://www.ncbi.nlm.nih.gov/pubmed/31291347 http://dx.doi.org/10.1371/journal.pone.0219452 |
Ejemplares similares
-
AllesTM: predicting multiple structural features of transmembrane proteins
por: Hönigschmid, Peter, et al.
Publicado: (2020) -
Improved sequence-based prediction of interaction sites in α-helical transmembrane proteins by deep learning
por: Sun, Jianfeng, et al.
Publicado: (2021) -
TMKit: a Python interface for computational analysis of transmembrane proteins
por: Sun, Jianfeng, et al.
Publicado: (2023) -
DIMA 2.0—predicted and known domain interactions
por: Pagel, Philipp, et al.
Publicado: (2008) -
Edgetic perturbation signatures represent known and novel cancer biomarkers
por: Kataka, Evans, et al.
Publicado: (2020)