Cargando…

Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor

Neuromodulation plays a critical role in brain function in both health and disease, and new tools that capture neuromodulation with high spatial and temporal resolution are needed. Here, we introduce a synthetic catecholamine nanosensor with fluorescent emission in the near infrared range (1000–1300...

Descripción completa

Detalles Bibliográficos
Autores principales: Beyene, Abraham G., Delevich, Kristen, Del Bonis-O’Donnell, Jackson Travis, Piekarski, David J., Lin, Wan Chen, Thomas, A. Wren, Yang, Sarah J., Kosillo, Polina, Yang, Darwin, Prounis, George S., Wilbrecht, Linda, Landry, Markita P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620097/
https://www.ncbi.nlm.nih.gov/pubmed/31309147
http://dx.doi.org/10.1126/sciadv.aaw3108
_version_ 1783433992422293504
author Beyene, Abraham G.
Delevich, Kristen
Del Bonis-O’Donnell, Jackson Travis
Piekarski, David J.
Lin, Wan Chen
Thomas, A. Wren
Yang, Sarah J.
Kosillo, Polina
Yang, Darwin
Prounis, George S.
Wilbrecht, Linda
Landry, Markita P.
author_facet Beyene, Abraham G.
Delevich, Kristen
Del Bonis-O’Donnell, Jackson Travis
Piekarski, David J.
Lin, Wan Chen
Thomas, A. Wren
Yang, Sarah J.
Kosillo, Polina
Yang, Darwin
Prounis, George S.
Wilbrecht, Linda
Landry, Markita P.
author_sort Beyene, Abraham G.
collection PubMed
description Neuromodulation plays a critical role in brain function in both health and disease, and new tools that capture neuromodulation with high spatial and temporal resolution are needed. Here, we introduce a synthetic catecholamine nanosensor with fluorescent emission in the near infrared range (1000–1300 nm), near infrared catecholamine nanosensor (nIRCat). We demonstrate that nIRCats can be used to measure electrically and optogenetically evoked dopamine release in brain tissue, revealing hotspots with a median size of 2 µm. We also demonstrated that nIRCats are compatible with dopamine pharmacology and show D2 autoreceptor modulation of evoked dopamine release, which varied as a function of initial release magnitude at different hotspots. Together, our data demonstrate that nIRCats and other nanosensors of this class can serve as versatile synthetic optical tools to monitor neuromodulatory neurotransmitter release with high spatial resolution.
format Online
Article
Text
id pubmed-6620097
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-66200972019-07-15 Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor Beyene, Abraham G. Delevich, Kristen Del Bonis-O’Donnell, Jackson Travis Piekarski, David J. Lin, Wan Chen Thomas, A. Wren Yang, Sarah J. Kosillo, Polina Yang, Darwin Prounis, George S. Wilbrecht, Linda Landry, Markita P. Sci Adv Research Articles Neuromodulation plays a critical role in brain function in both health and disease, and new tools that capture neuromodulation with high spatial and temporal resolution are needed. Here, we introduce a synthetic catecholamine nanosensor with fluorescent emission in the near infrared range (1000–1300 nm), near infrared catecholamine nanosensor (nIRCat). We demonstrate that nIRCats can be used to measure electrically and optogenetically evoked dopamine release in brain tissue, revealing hotspots with a median size of 2 µm. We also demonstrated that nIRCats are compatible with dopamine pharmacology and show D2 autoreceptor modulation of evoked dopamine release, which varied as a function of initial release magnitude at different hotspots. Together, our data demonstrate that nIRCats and other nanosensors of this class can serve as versatile synthetic optical tools to monitor neuromodulatory neurotransmitter release with high spatial resolution. American Association for the Advancement of Science 2019-07-10 /pmc/articles/PMC6620097/ /pubmed/31309147 http://dx.doi.org/10.1126/sciadv.aaw3108 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Beyene, Abraham G.
Delevich, Kristen
Del Bonis-O’Donnell, Jackson Travis
Piekarski, David J.
Lin, Wan Chen
Thomas, A. Wren
Yang, Sarah J.
Kosillo, Polina
Yang, Darwin
Prounis, George S.
Wilbrecht, Linda
Landry, Markita P.
Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor
title Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor
title_full Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor
title_fullStr Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor
title_full_unstemmed Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor
title_short Imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor
title_sort imaging striatal dopamine release using a nongenetically encoded near infrared fluorescent catecholamine nanosensor
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620097/
https://www.ncbi.nlm.nih.gov/pubmed/31309147
http://dx.doi.org/10.1126/sciadv.aaw3108
work_keys_str_mv AT beyeneabrahamg imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT delevichkristen imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT delbonisodonnelljacksontravis imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT piekarskidavidj imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT linwanchen imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT thomasawren imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT yangsarahj imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT kosillopolina imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT yangdarwin imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT prounisgeorges imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT wilbrechtlinda imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor
AT landrymarkitap imagingstriataldopaminereleaseusinganongeneticallyencodednearinfraredfluorescentcatecholaminenanosensor