Cargando…
Machine Perfusion and the Pancreas: Will It Increase the Donor Pool?
PURPOSE OF REVIEW: Pancreas transplantation enables complete patient independence from exogenous insulin administration and increases both patient survival and quality of life. Despite this, there has been a decline in pancreas transplantation for the past 20 years, influenced by changing donor demo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620253/ https://www.ncbi.nlm.nih.gov/pubmed/31292740 http://dx.doi.org/10.1007/s11892-019-1165-y |
Sumario: | PURPOSE OF REVIEW: Pancreas transplantation enables complete patient independence from exogenous insulin administration and increases both patient survival and quality of life. Despite this, there has been a decline in pancreas transplantation for the past 20 years, influenced by changing donor demographics with more high-risk extended criteria (ECD) and donation after cardiac death (DCD) donors. This review discusses whether the advent of machine perfusion (MP), if extended to the pancreas, can increase the pool of suitable donor organs. RECENT FINDINGS: Hypothermic and normothermic MP, as forms of preservation deemed superior to cold storage for high-risk kidney and liver donor organs, have opened the avenue for translation of this work into the pancreas. Recent experimental models of porcine and human ex-vivo pancreatic MP are promising. Applications of MP to the pancreas however need refinement—focusing on perfusion protocols and viability assessment tools. SUMMARY: Emerging research shows pancreatic MP can potentially offer superior preservation capacity, the ability to both resuscitate and manipulate organs, and assess functional and metabolic organ viability. The future of MP will lie in organ assessment and resuscitation after retrieval, where ultimately organs initially considered high risk and unsuitable for transplantation will be optimised and transformed, making them then available for clinical use, thus increasing the pool of suitably viable pancreata for transplantation. |
---|