Cargando…

Van der Waals negative capacitance transistors

The Boltzmann distribution of electrons sets a fundamental barrier to lowering energy consumption in metal-oxide-semiconductor field-effect transistors (MOSFETs). Negative capacitance FET (NC-FET), as an emerging FET architecture, is promising to overcome this thermionic limit and build ultra-low-po...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaowei, Yu, Peng, Lei, Zhendong, Zhu, Chao, Cao, Xun, Liu, Fucai, You, Lu, Zeng, Qingsheng, Deng, Ya, Zhou, Jiadong, Fu, Qundong, Wang, Junling, Huang, Yizhong, Liu, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620276/
https://www.ncbi.nlm.nih.gov/pubmed/31292435
http://dx.doi.org/10.1038/s41467-019-10738-4
Descripción
Sumario:The Boltzmann distribution of electrons sets a fundamental barrier to lowering energy consumption in metal-oxide-semiconductor field-effect transistors (MOSFETs). Negative capacitance FET (NC-FET), as an emerging FET architecture, is promising to overcome this thermionic limit and build ultra-low-power consuming electronics. Here, we demonstrate steep-slope NC-FETs based on two-dimensional molybdenum disulfide and CuInP(2)S(6) (CIPS) van der Waals (vdW) heterostructure. The vdW NC-FET provides an average subthreshold swing (SS) less than the Boltzmann’s limit for over seven decades of drain current, with a minimum SS of 28 mV dec(−1). Negligible hysteresis is achieved in NC-FETs with the thickness of CIPS less than 20 nm. A voltage gain of 24 is measured for vdW NC-FET logic inverter. Flexible vdW NC-FET is further demonstrated with sub-60 mV dec(−1) switching characteristics under the bending radius down to 3.8 mm. These results demonstrate the great potential of vdW NC-FET for ultra-low-power and flexible applications.