Cargando…

Polysaccharides of Fructus corni Improve Ovarian Function in Mice with Aging-Associated Perimenopause Symptoms

OBJECTIVE: Perimenopause symptoms have an extremely high incidence in aging women. Development of new strategies to improve perimenopause symptoms is important topic in clinical context. Increasing studies have shown that the polysaccharides of Fructus corni (PFC) have many pharmacological activitie...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yong, Wu, Jing-zhen, Li, Yu, Qi, Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620845/
https://www.ncbi.nlm.nih.gov/pubmed/31346338
http://dx.doi.org/10.1155/2019/2089586
Descripción
Sumario:OBJECTIVE: Perimenopause symptoms have an extremely high incidence in aging women. Development of new strategies to improve perimenopause symptoms is important topic in clinical context. Increasing studies have shown that the polysaccharides of Fructus corni (PFC) have many pharmacological activities including antiaging effects. Here, we evaluated the effects of PFC on the ovarian function in natural aging-associated perimenopause symptoms in mice. METHODS: Natural aging mice (16-month old) were orally administrated with PFC at 1.11 g/kg daily for 24 days with none-treated young mice (3-month old) as control. Blood samples were collected for measurements of serum levels of estradiol, progesterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH). Ovaries were isolated for histopathological and molecular exanimations. RESULTS: We found that the aging mice had decreased number of growing follicles and corpus luteum in ovary, but treatment with PFC restored their amounts. Measurement of hormones showed that there were low serum levels of estradiol and progesterone but high levels of LH and FSH in aging mice; however PFC restored estradiol and progesterone levels but reduced LH and FSH levels. Immunohistochemical analysis with ovarian tissues also revealed that the expression of inhibin and insulin-like growth factor 1 was reduced in the ovary of aging mice but was restored by PFC. These data indicated that PFC regulated ovarian function-associated hormone levels in aging mice. Furthermore, there was reduced expression of antiapoptotic protein Bcl-2 and increased expression of proapoptotic molecules Bax and cleaved-caspase-3 in the ovary of aging mice. However, treatment with PFC upregulated Bcl-2 and downregulated Bax and cleaved-caspase-3, suggesting that PFC inhibited apoptosis of granulosa cells in the ovary of aging mice. CONCLUSION: PFC improved the ovarian function in mice, which had high potential to be developed as a safe and effective therapeutic remedy for aging-associated perimenopause symptoms.