Cargando…
Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition
Real-world applications such as first-person video activity recognition require intelligent edge devices. However, size, weight, and power constraints of the embedded platforms cannot support resource intensive state-of-the-art algorithms. Machine learning lite algorithms, such as reservoir computin...
Autores principales: | Soures, Nicholas, Kudithipudi, Dhireesha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621912/ https://www.ncbi.nlm.nih.gov/pubmed/31333404 http://dx.doi.org/10.3389/fnins.2019.00686 |
Ejemplares similares
-
Exploring Neuromodulation for Dynamic Learning
por: Daram, Anurag, et al.
Publicado: (2020) -
Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing
por: Kudithipudi, Dhireesha, et al.
Publicado: (2016) -
Extended liquid state machines for speech recognition
por: Deckers, Lucas, et al.
Publicado: (2022) -
Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
por: Wijesinghe, Parami, et al.
Publicado: (2019) -
Reinforcement Learning With Low-Complexity Liquid State Machines
por: Ponghiran, Wachirawit, et al.
Publicado: (2019)