Cargando…
Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators
Obstacle avoidance is an important subject in the control of robot manipulators, but is remains challenging for robots with redundant degrees of freedom, especially when there exist complex physical constraints. In this paper, we propose a novel controller based on deep recurrent neural networks. By...
Autores principales: | Xu, Zhihao, Zhou, Xuefeng, Li, Shuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622359/ https://www.ncbi.nlm.nih.gov/pubmed/31333442 http://dx.doi.org/10.3389/fnbot.2019.00047 |
Ejemplares similares
-
Bi-criteria Acceleration Level Obstacle Avoidance of Redundant Manipulator
por: Zhao, Weifeng, et al.
Publicado: (2020) -
Collision-Free Compliance Control for Redundant Manipulators: An Optimization Case
por: Zhou, Xuefeng, et al.
Publicado: (2019) -
A New Noise-Tolerant Obstacle Avoidance Scheme for Motion Planning of Redundant Robot Manipulators
por: Guo, Dongsheng, et al.
Publicado: (2018) -
Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators
por: Shen, Yue, et al.
Publicado: (2022) -
A Predictable Obstacle Avoidance Model Based on Geometric Configuration of Redundant Manipulators for Motion Planning
por: Ju, Fengjia, et al.
Publicado: (2023)