Cargando…
Machine and deep learning meet genome-scale metabolic modeling
Omic data analysis is steadily growing as a driver of basic and applied molecular biology research. Core to the interpretation of complex and heterogeneous biological phenotypes are computational approaches in the fields of statistics and machine learning. In parallel, constraint-based metabolic mod...
Autores principales: | Zampieri, Guido, Vijayakumar, Supreeta, Yaneske, Elisabeth, Angione, Claudio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622478/ https://www.ncbi.nlm.nih.gov/pubmed/31295267 http://dx.doi.org/10.1371/journal.pcbi.1007084 |
Ejemplares similares
-
Genome‐scale metabolic modelling of SARS‐CoV‐2 in cancer cells reveals an increased shift to glycolytic energy production
por: Yaneske, Elisabeth, et al.
Publicado: (2021) -
Using machine learning as a surrogate model for agent-based simulations
por: Angione, Claudio, et al.
Publicado: (2022) -
A Hybrid Flux Balance Analysis and Machine Learning Pipeline Elucidates Metabolic Adaptation in Cyanobacteria
por: Vijayakumar, Supreeta, et al.
Publicado: (2020) -
Protocol for hybrid flux balance, statistical, and machine learning analysis of multi-omic data from the cyanobacterium Synechococcus sp. PCC 7002
por: Vijayakumar, Supreeta, et al.
Publicado: (2021) -
The poly-omics of ageing through individual-based metabolic modelling
por: Yaneske, Elisabeth, et al.
Publicado: (2018)