Cargando…
Ensemble-based kernel learning for a class of data assimilation problems with imperfect forward simulators
Simulator imperfection, often known as model error, is ubiquitous in practical data assimilation problems. Despite the enormous efforts dedicated to addressing this problem, properly handling simulator imperfection in data assimilation remains to be a challenging task. In this work, we propose an ap...
Autor principal: | Luo, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6622502/ https://www.ncbi.nlm.nih.gov/pubmed/31295300 http://dx.doi.org/10.1371/journal.pone.0219247 |
Ejemplares similares
-
An approach to localization for ensemble-based data assimilation
por: Wang, Bin, et al.
Publicado: (2018) -
Data assimilation: the ensemble Kalman filter
por: Evensen, Geir
Publicado: (2007) -
Moving forward with an imperfect vaccine
por: Pezzoli, Lorenzo, et al.
Publicado: (2021) -
Ensemble Classifier for Epileptic Seizure Detection for Imperfect EEG Data
por: Abualsaud, Khalid, et al.
Publicado: (2015) -
Variational regularisation for inverse problems with imperfect forward operators and general noise models
por: Bungert, Leon, et al.
Publicado: (2020)