Cargando…
Predicting asthma attacks in primary care: protocol for developing a machine learning-based prediction model
INTRODUCTION: Asthma is a long-term condition with rapid onset worsening of symptoms (‘attacks’) which can be unpredictable and may prove fatal. Models predicting asthma attacks require high sensitivity to minimise mortality risk, and high specificity to avoid unnecessary prescribing of preventative...
Autores principales: | Tibble, Holly, Tsanas, Athanasios, Horne, Elsie, Horne, Robert, Mizani, Mehrdad, Simpson, Colin R, Sheikh, Aziz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624024/ https://www.ncbi.nlm.nih.gov/pubmed/31292179 http://dx.doi.org/10.1136/bmjopen-2018-028375 |
Ejemplares similares
-
Linkage of primary care prescribing records and pharmacy dispensing Records in the Salford Lung Study: application in asthma
por: Tibble, Holly, et al.
Publicado: (2020) -
A data-driven typology of asthma medication adherence using cluster analysis
por: Tibble, Holly, et al.
Publicado: (2020) -
Challenges of Clustering Multimodal Clinical Data: Review of Applications in Asthma Subtyping
por: Horne, Elsie, et al.
Publicado: (2020) -
Predicting asthma attacks using connected mobile devices and machine learning: the AAMOS-00 observational study protocol
por: Tsang, Kevin Cheuk Him, et al.
Publicado: (2022) -
Derivation of asthma severity from electronic prescription records using British thoracic society treatment steps
por: Tibble, Holly, et al.
Publicado: (2022)