Cargando…
SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data
Clustering is a prevalent analytical means to analyze single cell RNA sequencing (scRNA-seq) data but the rapidly expanding data volume can make this process computationally challenging. New methods for both accurate and efficient clustering are of pressing need. Here we proposed Spearman subsamplin...
Autores principales: | Ren, Xianwen, Zheng, Liangtao, Zhang, Zemin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624216/ https://www.ncbi.nlm.nih.gov/pubmed/31202000 http://dx.doi.org/10.1016/j.gpb.2018.10.003 |
Ejemplares similares
-
Linear-time cluster ensembles of large-scale single-cell RNA-seq and multimodal data
por: Do, Van Hoan, et al.
Publicado: (2021) -
Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
por: Ntranos, Vasilis, et al.
Publicado: (2016) -
CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation
por: Hu, Zhiyuan, et al.
Publicado: (2021) -
Clustering Deviation Index (CDI): a robust and accurate internal measure for evaluating scRNA-seq data clustering
por: Fang, Jiyuan, et al.
Publicado: (2022) -
Development of a Single-Piece Sperm Counting Chamber (SSCC) for Aquatic Species
por: Belgodere, Jorge A., et al.
Publicado: (2022)