Cargando…
Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates
Emerging antibiotic resistance is a major global health threat. The analysis of nucleic acid sequences linked to susceptibility phenotypes facilitates the study of genetic antibiotic resistance determinants to inform molecular diagnostics and drug development. We collected genetic data (11,087 newly...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624217/ https://www.ncbi.nlm.nih.gov/pubmed/31100356 http://dx.doi.org/10.1016/j.gpb.2018.11.002 |
_version_ | 1783434225043636224 |
---|---|
author | Galata, Valentina Laczny, Cédric C. Backes, Christina Hemmrich-Stanisak, Georg Schmolke, Susanne Franke, Andre Meese, Eckart Herrmann, Mathias von Müller, Lutz Plum, Achim Müller, Rolf Stähler, Cord Posch, Andreas E. Keller, Andreas |
author_facet | Galata, Valentina Laczny, Cédric C. Backes, Christina Hemmrich-Stanisak, Georg Schmolke, Susanne Franke, Andre Meese, Eckart Herrmann, Mathias von Müller, Lutz Plum, Achim Müller, Rolf Stähler, Cord Posch, Andreas E. Keller, Andreas |
author_sort | Galata, Valentina |
collection | PubMed |
description | Emerging antibiotic resistance is a major global health threat. The analysis of nucleic acid sequences linked to susceptibility phenotypes facilitates the study of genetic antibiotic resistance determinants to inform molecular diagnostics and drug development. We collected genetic data (11,087 newly-sequenced whole genomes) and culture-based resistance profiles (10,991 out of the 11,087 isolates comprehensively tested against 22 antibiotics in total) of clinical isolates including 18 main species spanning a time period of 30 years. Species and drug specific resistance patterns were observed including increased resistance rates for Acinetobacter baumannii to carbapenems and for Escherichia coli to fluoroquinolones. Species-level pan-genomes were constructed to reflect the genetic repertoire of the respective species, including conserved essential genes and known resistance factors. Integrating phenotypes and genotypes through species-level pan-genomes allowed to infer gene–drug resistance associations using statistical testing. The isolate collection and the analysis results have been integrated into GEAR-base, a resource available for academic research use free of charge at https://gear-base.com. |
format | Online Article Text |
id | pubmed-6624217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66242172019-07-22 Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates Galata, Valentina Laczny, Cédric C. Backes, Christina Hemmrich-Stanisak, Georg Schmolke, Susanne Franke, Andre Meese, Eckart Herrmann, Mathias von Müller, Lutz Plum, Achim Müller, Rolf Stähler, Cord Posch, Andreas E. Keller, Andreas Genomics Proteomics Bioinformatics Original Research Emerging antibiotic resistance is a major global health threat. The analysis of nucleic acid sequences linked to susceptibility phenotypes facilitates the study of genetic antibiotic resistance determinants to inform molecular diagnostics and drug development. We collected genetic data (11,087 newly-sequenced whole genomes) and culture-based resistance profiles (10,991 out of the 11,087 isolates comprehensively tested against 22 antibiotics in total) of clinical isolates including 18 main species spanning a time period of 30 years. Species and drug specific resistance patterns were observed including increased resistance rates for Acinetobacter baumannii to carbapenems and for Escherichia coli to fluoroquinolones. Species-level pan-genomes were constructed to reflect the genetic repertoire of the respective species, including conserved essential genes and known resistance factors. Integrating phenotypes and genotypes through species-level pan-genomes allowed to infer gene–drug resistance associations using statistical testing. The isolate collection and the analysis results have been integrated into GEAR-base, a resource available for academic research use free of charge at https://gear-base.com. Elsevier 2019-04 2019-05-14 /pmc/articles/PMC6624217/ /pubmed/31100356 http://dx.doi.org/10.1016/j.gpb.2018.11.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Galata, Valentina Laczny, Cédric C. Backes, Christina Hemmrich-Stanisak, Georg Schmolke, Susanne Franke, Andre Meese, Eckart Herrmann, Mathias von Müller, Lutz Plum, Achim Müller, Rolf Stähler, Cord Posch, Andreas E. Keller, Andreas Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates |
title | Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates |
title_full | Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates |
title_fullStr | Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates |
title_full_unstemmed | Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates |
title_short | Integrating Culture-based Antibiotic Resistance Profiles with Whole-genome Sequencing Data for 11,087 Clinical Isolates |
title_sort | integrating culture-based antibiotic resistance profiles with whole-genome sequencing data for 11,087 clinical isolates |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624217/ https://www.ncbi.nlm.nih.gov/pubmed/31100356 http://dx.doi.org/10.1016/j.gpb.2018.11.002 |
work_keys_str_mv | AT galatavalentina integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT lacznycedricc integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT backeschristina integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT hemmrichstanisakgeorg integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT schmolkesusanne integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT frankeandre integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT meeseeckart integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT herrmannmathias integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT vonmullerlutz integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT plumachim integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT mullerrolf integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT stahlercord integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT poschandrease integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates AT kellerandreas integratingculturebasedantibioticresistanceprofileswithwholegenomesequencingdatafor11087clinicalisolates |