Cargando…
Glandular Segmentation of Prostate Cancer: An Illustration of How the Choice of Histopathological Stain Is One Key to Success for Computational Pathology
Digital pathology offers the potential for computer-aided diagnosis, significantly reducing the pathologists' workload and paving the way for accurate prognostication with reduced inter-and intra-observer variations. But successful computer-based analysis requires careful tissue preparation and...
Autores principales: | Avenel, Christophe, Tolf, Anna, Dragomir, Anca, Carlbom, Ingrid B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624635/ https://www.ncbi.nlm.nih.gov/pubmed/31334225 http://dx.doi.org/10.3389/fbioe.2019.00125 |
Ejemplares similares
-
Nuclear Segmentation in Histopathological Images Using Two-Stage Stacked U-Nets With Attention Mechanism
por: Kong, Yan, et al.
Publicado: (2020) -
Digital Assessment of Stained Breast Tissue Images for Comprehensive Tumor and Microenvironment Analysis
por: Mittal, Shachi, et al.
Publicado: (2019) -
Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology
por: Otálora, Sebastian, et al.
Publicado: (2019) -
Solution-free and simplified H&E staining using a hydrogel-based stamping technology
por: Kim, Jinho, et al.
Publicado: (2023) -
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
por: Ren, Jian, et al.
Publicado: (2019)