Cargando…
CONFINED: distinguishing biological from technical sources of variation by leveraging multiple methylation datasets
Methylation datasets are affected by innumerable sources of variability, both biological (cell-type composition, genetics) and technical (batch effects). Here, we propose a reference-free method based on sparse canonical correlation analysis to separate the biological from technical sources of varia...
Autores principales: | Thompson, Mike, Chen, Zeyuan Johnson, Rahmani, Elior, Halperin, Eran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624895/ https://www.ncbi.nlm.nih.gov/pubmed/31300005 http://dx.doi.org/10.1186/s13059-019-1743-y |
Ejemplares similares
-
BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference
por: Rahmani, Elior, et al.
Publicado: (2018) -
The Effect of Model Directionality on Cell-Type-Specific Differential DNA Methylation Analysis
por: Rahmani, Elior, et al.
Publicado: (2022) -
Association testing of bisulfite-sequencing methylation data via a Laplace approximation
por: Weissbrod, Omer, et al.
Publicado: (2017) -
SNV-FEAST: microbial source tracking with single nucleotide variants
por: Briscoe, Leah, et al.
Publicado: (2023) -
A new toolbox to distinguish the sources of spatial memory error
por: Grogan, John P., et al.
Publicado: (2020)