Cargando…
Metal–ligand covalency enables room temperature molecular qubit candidates
Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal–ligand covalency on spin–lattice relaxation, which compris...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625489/ https://www.ncbi.nlm.nih.gov/pubmed/31367325 http://dx.doi.org/10.1039/c9sc00074g |
_version_ | 1783434427830894592 |
---|---|
author | Fataftah, Majed S. Krzyaniak, Matthew D. Vlaisavljevich, Bess Wasielewski, Michael R. Zadrozny, Joseph M. Freedman, Danna E. |
author_facet | Fataftah, Majed S. Krzyaniak, Matthew D. Vlaisavljevich, Bess Wasielewski, Michael R. Zadrozny, Joseph M. Freedman, Danna E. |
author_sort | Fataftah, Majed S. |
collection | PubMed |
description | Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal–ligand covalency on spin–lattice relaxation, which comprises the upper limit of coherence time. Specifically, we studied the impact of the first coordination sphere on spin–lattice relaxation through a series of four molecules featuring V–S, V–Se, Cu–S, and Cu–Se bonds, the Ph(4)P(+) salts of the complexes [V(C(6)H(4)S(2))(3)](2–) (1), [Cu(C(6)H(4)S(2))(2)](2–) (2), [V(C(6)H(4)Se(2))(3)](2–) (3), and [Cu(C(6)H(4)Se(2))(2)](2–) (4). The combined results of pulse electron paramagnetic resonance spectroscopy and ac magnetic susceptibility studies demonstrate the influence of greater M–L covalency, and consequently spin-delocalization onto the ligand, on elongating spin–lattice relaxation times. Notably, we observe the longest spin–lattice relaxation times in 2, and spin echos that survive until room temperature in both copper complexes (2 and 4). |
format | Online Article Text |
id | pubmed-6625489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-66254892019-07-31 Metal–ligand covalency enables room temperature molecular qubit candidates Fataftah, Majed S. Krzyaniak, Matthew D. Vlaisavljevich, Bess Wasielewski, Michael R. Zadrozny, Joseph M. Freedman, Danna E. Chem Sci Chemistry Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal–ligand covalency on spin–lattice relaxation, which comprises the upper limit of coherence time. Specifically, we studied the impact of the first coordination sphere on spin–lattice relaxation through a series of four molecules featuring V–S, V–Se, Cu–S, and Cu–Se bonds, the Ph(4)P(+) salts of the complexes [V(C(6)H(4)S(2))(3)](2–) (1), [Cu(C(6)H(4)S(2))(2)](2–) (2), [V(C(6)H(4)Se(2))(3)](2–) (3), and [Cu(C(6)H(4)Se(2))(2)](2–) (4). The combined results of pulse electron paramagnetic resonance spectroscopy and ac magnetic susceptibility studies demonstrate the influence of greater M–L covalency, and consequently spin-delocalization onto the ligand, on elongating spin–lattice relaxation times. Notably, we observe the longest spin–lattice relaxation times in 2, and spin echos that survive until room temperature in both copper complexes (2 and 4). Royal Society of Chemistry 2019-05-31 /pmc/articles/PMC6625489/ /pubmed/31367325 http://dx.doi.org/10.1039/c9sc00074g Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Fataftah, Majed S. Krzyaniak, Matthew D. Vlaisavljevich, Bess Wasielewski, Michael R. Zadrozny, Joseph M. Freedman, Danna E. Metal–ligand covalency enables room temperature molecular qubit candidates |
title | Metal–ligand covalency enables room temperature molecular qubit candidates
|
title_full | Metal–ligand covalency enables room temperature molecular qubit candidates
|
title_fullStr | Metal–ligand covalency enables room temperature molecular qubit candidates
|
title_full_unstemmed | Metal–ligand covalency enables room temperature molecular qubit candidates
|
title_short | Metal–ligand covalency enables room temperature molecular qubit candidates
|
title_sort | metal–ligand covalency enables room temperature molecular qubit candidates |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625489/ https://www.ncbi.nlm.nih.gov/pubmed/31367325 http://dx.doi.org/10.1039/c9sc00074g |
work_keys_str_mv | AT fataftahmajeds metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates AT krzyaniakmatthewd metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates AT vlaisavljevichbess metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates AT wasielewskimichaelr metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates AT zadroznyjosephm metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates AT freedmandannae metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates |