Cargando…

Metal–ligand covalency enables room temperature molecular qubit candidates

Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal–ligand covalency on spin–lattice relaxation, which compris...

Descripción completa

Detalles Bibliográficos
Autores principales: Fataftah, Majed S., Krzyaniak, Matthew D., Vlaisavljevich, Bess, Wasielewski, Michael R., Zadrozny, Joseph M., Freedman, Danna E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625489/
https://www.ncbi.nlm.nih.gov/pubmed/31367325
http://dx.doi.org/10.1039/c9sc00074g
_version_ 1783434427830894592
author Fataftah, Majed S.
Krzyaniak, Matthew D.
Vlaisavljevich, Bess
Wasielewski, Michael R.
Zadrozny, Joseph M.
Freedman, Danna E.
author_facet Fataftah, Majed S.
Krzyaniak, Matthew D.
Vlaisavljevich, Bess
Wasielewski, Michael R.
Zadrozny, Joseph M.
Freedman, Danna E.
author_sort Fataftah, Majed S.
collection PubMed
description Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal–ligand covalency on spin–lattice relaxation, which comprises the upper limit of coherence time. Specifically, we studied the impact of the first coordination sphere on spin–lattice relaxation through a series of four molecules featuring V–S, V–Se, Cu–S, and Cu–Se bonds, the Ph(4)P(+) salts of the complexes [V(C(6)H(4)S(2))(3)](2–) (1), [Cu(C(6)H(4)S(2))(2)](2–) (2), [V(C(6)H(4)Se(2))(3)](2–) (3), and [Cu(C(6)H(4)Se(2))(2)](2–) (4). The combined results of pulse electron paramagnetic resonance spectroscopy and ac magnetic susceptibility studies demonstrate the influence of greater M–L covalency, and consequently spin-delocalization onto the ligand, on elongating spin–lattice relaxation times. Notably, we observe the longest spin–lattice relaxation times in 2, and spin echos that survive until room temperature in both copper complexes (2 and 4).
format Online
Article
Text
id pubmed-6625489
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-66254892019-07-31 Metal–ligand covalency enables room temperature molecular qubit candidates Fataftah, Majed S. Krzyaniak, Matthew D. Vlaisavljevich, Bess Wasielewski, Michael R. Zadrozny, Joseph M. Freedman, Danna E. Chem Sci Chemistry Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal–ligand covalency on spin–lattice relaxation, which comprises the upper limit of coherence time. Specifically, we studied the impact of the first coordination sphere on spin–lattice relaxation through a series of four molecules featuring V–S, V–Se, Cu–S, and Cu–Se bonds, the Ph(4)P(+) salts of the complexes [V(C(6)H(4)S(2))(3)](2–) (1), [Cu(C(6)H(4)S(2))(2)](2–) (2), [V(C(6)H(4)Se(2))(3)](2–) (3), and [Cu(C(6)H(4)Se(2))(2)](2–) (4). The combined results of pulse electron paramagnetic resonance spectroscopy and ac magnetic susceptibility studies demonstrate the influence of greater M–L covalency, and consequently spin-delocalization onto the ligand, on elongating spin–lattice relaxation times. Notably, we observe the longest spin–lattice relaxation times in 2, and spin echos that survive until room temperature in both copper complexes (2 and 4). Royal Society of Chemistry 2019-05-31 /pmc/articles/PMC6625489/ /pubmed/31367325 http://dx.doi.org/10.1039/c9sc00074g Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Fataftah, Majed S.
Krzyaniak, Matthew D.
Vlaisavljevich, Bess
Wasielewski, Michael R.
Zadrozny, Joseph M.
Freedman, Danna E.
Metal–ligand covalency enables room temperature molecular qubit candidates
title Metal–ligand covalency enables room temperature molecular qubit candidates
title_full Metal–ligand covalency enables room temperature molecular qubit candidates
title_fullStr Metal–ligand covalency enables room temperature molecular qubit candidates
title_full_unstemmed Metal–ligand covalency enables room temperature molecular qubit candidates
title_short Metal–ligand covalency enables room temperature molecular qubit candidates
title_sort metal–ligand covalency enables room temperature molecular qubit candidates
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625489/
https://www.ncbi.nlm.nih.gov/pubmed/31367325
http://dx.doi.org/10.1039/c9sc00074g
work_keys_str_mv AT fataftahmajeds metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates
AT krzyaniakmatthewd metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates
AT vlaisavljevichbess metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates
AT wasielewskimichaelr metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates
AT zadroznyjosephm metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates
AT freedmandannae metalligandcovalencyenablesroomtemperaturemolecularqubitcandidates