Cargando…
Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
Rational solvent selection remains a significant challenge in process development. Here we describe a hybrid mechanistic-machine learning approach, geared towards automated process development workflow. A library of 459 solvents was used, for which 12 conventional molecular descriptors, two reaction...
Autores principales: | Amar, Yehia, Schweidtmann, Artur M., Deutsch, Paul, Cao, Liwei, Lapkin, Alexei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625492/ https://www.ncbi.nlm.nih.gov/pubmed/31367324 http://dx.doi.org/10.1039/c9sc01844a |
Ejemplares similares
-
Asymmetric pyrone Diels–Alder reactions enabled by dienamine catalysis
por: Cole, Charles J. F., et al.
Publicado: (2019) -
Asymmetric β-arylation of cyclopropanols enabled by photoredox and nickel dual catalysis
por: Wang, Jianhua, et al.
Publicado: (2022) -
Application of Biobased Solvents in Asymmetric Catalysis
por: Miele, Margherita, et al.
Publicado: (2022) -
Machine Learning Descriptors for Data‐Driven Catalysis Study
por: Mou, Li‐Hui, et al.
Publicado: (2023) -
Supramolecular Halogen Bonds in Asymmetric Catalysis
por: Kaasik, Mikk, et al.
Publicado: (2020)