Cargando…

Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry

Thermometry via magnetic resonance imaging (MRI) would provide a powerful noninvasive window into physiological temperature management. Cobalt-59 nuclear spins demonstrate exceptional temperature dependence of their NMR chemical shifts, yet the insight to control this dependence via molecular design...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozvat, Tyler M., Peña, Manuel E., Zadrozny, Joseph M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625495/
https://www.ncbi.nlm.nih.gov/pubmed/31367328
http://dx.doi.org/10.1039/c9sc01689a
_version_ 1783434429227597824
author Ozvat, Tyler M.
Peña, Manuel E.
Zadrozny, Joseph M.
author_facet Ozvat, Tyler M.
Peña, Manuel E.
Zadrozny, Joseph M.
author_sort Ozvat, Tyler M.
collection PubMed
description Thermometry via magnetic resonance imaging (MRI) would provide a powerful noninvasive window into physiological temperature management. Cobalt-59 nuclear spins demonstrate exceptional temperature dependence of their NMR chemical shifts, yet the insight to control this dependence via molecular design is lacking. We present the first systematic evidence that encapsulation of this spin system amplifies the temperature sensitivity. We tested the temperature dependence of the (59)Co chemical shift (Δδ/ΔT) in a series of five low-spin cobalt(iii) complexes as a function of increasing encapsulation within the 1st coordination sphere. This study spans from [Co(NH(3))(6)]Cl(3), with no interligand connectivity, to a fully encapsulated dinitrosarcophagine (diNOsar) complex, [Co(diNOsar)]Cl(3). We discovered Δδ/ΔT values that span from 1.44(2) ppm °C(–1) in [Co(NH(3))(6)]Cl(3) to 2.04(2) ppm °C(–1) in [Co(diNOsar)]Cl(3), the latter among the highest for a molecular complex. The data herein suggest that designing (59)Co NMR thermometers toward high chemical stability can be coincident with high Δδ/ΔT. To better understand this phenomenon, variable-temperature UV-Vis, (59)Co NMR relaxation, Raman spectroscopic, and variable-solvent investigations were performed. Data from these measurements highlight an unexpected impact of encapsulation – an increasingly dynamic and flexible inner coordination sphere. These results comprise the first systematic studies to reveal insight into the molecular factors that govern Δδ/ΔT and provide the first evidence of (59)Co nuclear-spin control via vibrational means.
format Online
Article
Text
id pubmed-6625495
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-66254952019-07-31 Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry Ozvat, Tyler M. Peña, Manuel E. Zadrozny, Joseph M. Chem Sci Chemistry Thermometry via magnetic resonance imaging (MRI) would provide a powerful noninvasive window into physiological temperature management. Cobalt-59 nuclear spins demonstrate exceptional temperature dependence of their NMR chemical shifts, yet the insight to control this dependence via molecular design is lacking. We present the first systematic evidence that encapsulation of this spin system amplifies the temperature sensitivity. We tested the temperature dependence of the (59)Co chemical shift (Δδ/ΔT) in a series of five low-spin cobalt(iii) complexes as a function of increasing encapsulation within the 1st coordination sphere. This study spans from [Co(NH(3))(6)]Cl(3), with no interligand connectivity, to a fully encapsulated dinitrosarcophagine (diNOsar) complex, [Co(diNOsar)]Cl(3). We discovered Δδ/ΔT values that span from 1.44(2) ppm °C(–1) in [Co(NH(3))(6)]Cl(3) to 2.04(2) ppm °C(–1) in [Co(diNOsar)]Cl(3), the latter among the highest for a molecular complex. The data herein suggest that designing (59)Co NMR thermometers toward high chemical stability can be coincident with high Δδ/ΔT. To better understand this phenomenon, variable-temperature UV-Vis, (59)Co NMR relaxation, Raman spectroscopic, and variable-solvent investigations were performed. Data from these measurements highlight an unexpected impact of encapsulation – an increasingly dynamic and flexible inner coordination sphere. These results comprise the first systematic studies to reveal insight into the molecular factors that govern Δδ/ΔT and provide the first evidence of (59)Co nuclear-spin control via vibrational means. Royal Society of Chemistry 2019-06-05 /pmc/articles/PMC6625495/ /pubmed/31367328 http://dx.doi.org/10.1039/c9sc01689a Text en This journal is © The Royal Society of Chemistry 2019 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Ozvat, Tyler M.
Peña, Manuel E.
Zadrozny, Joseph M.
Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry
title Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry
title_full Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry
title_fullStr Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry
title_full_unstemmed Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry
title_short Influence of ligand encapsulation on cobalt-59 chemical-shift thermometry
title_sort influence of ligand encapsulation on cobalt-59 chemical-shift thermometry
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625495/
https://www.ncbi.nlm.nih.gov/pubmed/31367328
http://dx.doi.org/10.1039/c9sc01689a
work_keys_str_mv AT ozvattylerm influenceofligandencapsulationoncobalt59chemicalshiftthermometry
AT penamanuele influenceofligandencapsulationoncobalt59chemicalshiftthermometry
AT zadroznyjosephm influenceofligandencapsulationoncobalt59chemicalshiftthermometry