Cargando…
Optimal transport and colossal ionic mechano-conductance in graphene crown ethers
Biological ion channels balance electrostatic and dehydration effects to yield large ion selectivity alongside high transport rates. These macromolecular systems are often interrogated through point mutations of their pore domain, limiting the scope of mechanistic studies. In contrast, we demonstrat...
Autores principales: | Sahu, Subin, Elenewski, Justin, Rohmann, Christoph, Zwolak, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625819/ https://www.ncbi.nlm.nih.gov/pubmed/31309155 http://dx.doi.org/10.1126/sciadv.aaw5478 |
Ejemplares similares
-
Topology, landscapes, and biomolecular energy transport
por: Elenewski, Justin E., et al.
Publicado: (2019) -
Extensive removal of thallium by graphene oxide functionalized with aza-crown ether
por: Pan, Shu-Xin, et al.
Publicado: (2020) -
Artificial sodium-selective ionic device based on crown-ether crystals with subnanometer pores
por: Ye, Tingyan, et al.
Publicado: (2021) -
Colossal in-plane magnetoresistance ratio of graphene sandwiched with Ni nanostructures
por: Wicaksono, Yusuf, et al.
Publicado: (2022) -
Crossover behavior of the thermal conductance and Kramers’ transition rate theory
por: Velizhanin, Kirill A., et al.
Publicado: (2015)