Cargando…

Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective

For severely paralyzed people, Brain‐Computer Interfaces (BCIs) can potentially replace lost motor output and provide a brain‐based control signal for augmentative and alternative communication devices or neuroprosthetics. Many BCIs focus on neuronal signals acquired from the hand area of the sensor...

Descripción completa

Detalles Bibliográficos
Autores principales: Branco, Mariana P., de Boer, Lisanne M., Ramsey, Nick F., Vansteensel, Mariska J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625947/
https://www.ncbi.nlm.nih.gov/pubmed/30633413
http://dx.doi.org/10.1111/ejn.14342
_version_ 1783434472404811776
author Branco, Mariana P.
de Boer, Lisanne M.
Ramsey, Nick F.
Vansteensel, Mariska J.
author_facet Branco, Mariana P.
de Boer, Lisanne M.
Ramsey, Nick F.
Vansteensel, Mariska J.
author_sort Branco, Mariana P.
collection PubMed
description For severely paralyzed people, Brain‐Computer Interfaces (BCIs) can potentially replace lost motor output and provide a brain‐based control signal for augmentative and alternative communication devices or neuroprosthetics. Many BCIs focus on neuronal signals acquired from the hand area of the sensorimotor cortex, employing changes in the patterns of neuronal firing or spectral power associated with one or more types of hand movement. Hand and finger movement can be described by two groups of movement features, namely kinematics (spatial and motion aspects) and kinetics (muscles and forces). Despite extensive primate and human research, it is not fully understood how these features are represented in the SMC and how they lead to the appropriate movement. Yet, the available information may provide insight into which features are most suitable for BCI control. To that purpose, the current paper provides an in‐depth review on the movement features encoded in the SMC. Even though there is no consensus on how exactly the SMC generates movement, we conclude that some parameters are well represented in the SMC and can be accurately used for BCI control with discrete as well as continuous feedback. However, the vast evidence also suggests that movement should be interpreted as a combination of multiple parameters rather than isolated ones, pleading for further exploration of sensorimotor control models for accurate BCI control.
format Online
Article
Text
id pubmed-6625947
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-66259472019-11-18 Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective Branco, Mariana P. de Boer, Lisanne M. Ramsey, Nick F. Vansteensel, Mariska J. Eur J Neurosci Behavioural Neuroscience For severely paralyzed people, Brain‐Computer Interfaces (BCIs) can potentially replace lost motor output and provide a brain‐based control signal for augmentative and alternative communication devices or neuroprosthetics. Many BCIs focus on neuronal signals acquired from the hand area of the sensorimotor cortex, employing changes in the patterns of neuronal firing or spectral power associated with one or more types of hand movement. Hand and finger movement can be described by two groups of movement features, namely kinematics (spatial and motion aspects) and kinetics (muscles and forces). Despite extensive primate and human research, it is not fully understood how these features are represented in the SMC and how they lead to the appropriate movement. Yet, the available information may provide insight into which features are most suitable for BCI control. To that purpose, the current paper provides an in‐depth review on the movement features encoded in the SMC. Even though there is no consensus on how exactly the SMC generates movement, we conclude that some parameters are well represented in the SMC and can be accurately used for BCI control with discrete as well as continuous feedback. However, the vast evidence also suggests that movement should be interpreted as a combination of multiple parameters rather than isolated ones, pleading for further exploration of sensorimotor control models for accurate BCI control. John Wiley and Sons Inc. 2019-01-30 2019-09 /pmc/articles/PMC6625947/ /pubmed/30633413 http://dx.doi.org/10.1111/ejn.14342 Text en © 2019 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Behavioural Neuroscience
Branco, Mariana P.
de Boer, Lisanne M.
Ramsey, Nick F.
Vansteensel, Mariska J.
Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective
title Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective
title_full Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective
title_fullStr Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective
title_full_unstemmed Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective
title_short Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain‐Computer Interface perspective
title_sort encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: a brain‐computer interface perspective
topic Behavioural Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625947/
https://www.ncbi.nlm.nih.gov/pubmed/30633413
http://dx.doi.org/10.1111/ejn.14342
work_keys_str_mv AT brancomarianap encodingofkineticandkinematicmovementparametersinthesensorimotorcortexabraincomputerinterfaceperspective
AT deboerlisannem encodingofkineticandkinematicmovementparametersinthesensorimotorcortexabraincomputerinterfaceperspective
AT ramseynickf encodingofkineticandkinematicmovementparametersinthesensorimotorcortexabraincomputerinterfaceperspective
AT vansteenselmariskaj encodingofkineticandkinematicmovementparametersinthesensorimotorcortexabraincomputerinterfaceperspective