Cargando…
Analytical Study of Fuel Switching from Heavy Fuel Oil to Natural Gas in clay brick factories at Arab Abu Saed, Greater Cairo
Arab Abu Saed area in Giza governorate, south to Cairo contains more than 228 clay brick kilns represent the largest cluster of brickworks in Egypt. Burning of Heavy Fuel Oil (HFO) in such kilns is the main source of air pollution in the surrounding locations. In this study, investigation of switchi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626056/ https://www.ncbi.nlm.nih.gov/pubmed/31300745 http://dx.doi.org/10.1038/s41598-019-46587-w |
Sumario: | Arab Abu Saed area in Giza governorate, south to Cairo contains more than 228 clay brick kilns represent the largest cluster of brickworks in Egypt. Burning of Heavy Fuel Oil (HFO) in such kilns is the main source of air pollution in the surrounding locations. In this study, investigation of switching the fuel used in brick kilns from (HFO) to Natural Gas (NG) is carried out and the pollution loads are assessed in both cases. In addition, two Gaussian dispersion plume models are employed to estimate the concentration of primary pollutants; PM(10), SO(2), and NO(2) at seven locations in the vicinity of Arab Abu Saed to determine the most adversely affected locations. Statistical analysis is applied to evaluate the correlation and conformity of the results of both models. Results show that using of NG leads to a significant reduction of pollution loads of PM(10), SO(2) and NO(2) reaches 96%, 72%, and 24% respectively. In addition, the reduction of naturally occurring radionuclides in air is analyzed. Activity concentrations of Ra-226, Th-232 and K-40 in Bq/l for HFO were measured using HPGe detector for six HFO samples. Exposure due to air submersion of naturally occurring radionuclides in the study area leads to annual equivalent dose ranged between 2.16 mSv/y (received by Uterus) and 14 mSv/y (received by skin), and average effective dose 2.65 mSv/y which represent valuable exposure. |
---|